Чем газовая турбина отличается от паровой. Принцип работы гту

Грицына В.П.

В связи с многократным ростом тарифов на электроэнергию в России, на многих предприятиях рассматривается вопросы строительства собственных электростанций малой мощности. В ряде регионов разрабатываются программы строительства малых или мини ТЭЦ, в частности, как замена устаревших котельных. На новой малой ТЭЦ, коэффициент использования топлива на которой достигает 90% при полном использовании тела в производстве и для отопления, стоимость получаемой электроэнергии может быть значительно ниже стоимости электроэнергии, получаемой от энергосистемы.

При рассмотрении проектов сооружения малых ТЭС энергетики и специалисты предприятий ориентируются на показатели, достигнутые в большой энергетике. Постоянное совершенствование газовых турбин (ГТУ) для применения в большой энергетике позволило увеличить их кпд до 36% и более, а применение комбинированного парогазового цикла (ПГУ) увеличило электрический кпд ТЭС до 54 %-57%.
Однако, в малой энергетике нецелесообразно рассматривать возможности применения сложных схем комбинированных циклов ПГУ для производства электроэнергии. Кроме того, газовые турбины в сравнении с газовыми двигателями, как приводы электрогенераторов, существенно проигрывают по кпд и эксплуатационным характеристикам, особенно при малых мощностях (менее 10 МВт). Так как в нашей стране ни газовые турбины, ни газопоршневые двигатели пока не получили широкого распространения в малой стационарной энергетике, то выбор конкретного технического решения представляет существенную проблему.
Эта проблема актуальна и для большой энергетики, т.е. для энергосистем. В современных экономических условиях, при отсутствии средств на строительство крупных электростанций по устаревшим проектам, к которым можно уже отнести и отечественный проект ПГУ 325 МВт, спроектированный 5 лет назад. Энергосистемы и РАО ЕЭС России должны обратить специальное внимание на развитие малой энергетики, на объектах которой могут быть опробованы новые технологии, что позволит начать возрождение отечественных турбостроительных и машиностроительных заводов и в дальнейшем перейти на большие мощности.
В последнее десятилетие за рубежом построены крупные дизельные или газомоторные ТЭС мощностью 100-200 Мвт . Электрический кпд дизельных или газомоторных электростанций (ДТЭС) достигает 47%, что превышает показатели ГТУ (36%-37%), однако уступает показателям ПГУ (51%-57%). Электростанции ПГУ включают большую номенклатуру оборудования: газовую турбину, паровой котел-утилизатор, паровую турбину, конденсатор, систему водоподготовки (плюс еще дожимной компрессор, если сжигается природный газ низкого или среднего давления. Дизель-генераторы могут работать на тяжелом топливе, которое в 2 раза дешевле, чем газотурбинное топливо и могут работать на газе низкого давления без применения дожимных компрессоров. По оценке фирмы S.E.M.T. PIELSTICK , полные затраты в течение 15 лет на эксплуатацию дизельного энергоблока мощностью 20 МВт в 2 раза меньше, чем для газотурбинной ТЭС той же мощности при использовании жидкого топлива обеими энергоустановками.
Перспективным Российским производителем дизельных энергоблоков до 22 МВт является Брянский машиностроительный завод, который предлагает заказчикам энергоблоки с повышенным кпд до 50% для работы, как на тяжелом топливе с вязкостью до 700 сСт при 50 С и содержанием серы до 5%, так и для работы на газообразном топливе.
Вариант крупной дизельной ТЭС может оказаться предпочтительнее, чем газотурбинная энергоустановка.
В малой энергетике при мощностях агрегатов менее 10 Мвт преимущества современных дизель-генераторов проявляются еще в большей мере.
Рассмотрим три варианта ТЭС с газотурбинными установками и газопоршневыми двигателями.

  • ТЭЦ, работающая на номинальной нагрузке круглосуточно с котлами-утилизаторами для теплоснабжения или пароснабжения.
  • ТЭЦ, электрогенератор и котел-утилизатор, которой работают только днем, а ночью теплоснабжение осуществляется от бака-аккумулятора горячей воды.
  • ТЭС, производящая только электричество без использования тепла уходящих газов.
  • Коэффициент использования топлива у первых двух вариантов электростанций (при различном электрическом кпд) за счет теплоснабжения могут достигать 80%-94%, как в случае применения газовых турбин, так и для моторного привода.
    Экономичность всех вариантов электростанций зависит от надежности и экономичности прежде всего "первой ступени" -привода электрогенератора.
    Энтузиасты применения малых газовых турбин агитируют за их широкое применение, отмечая более высокую удельную мощность. Например, в [ 1 ] сообщается, что Elliot Energy Systems (в 1998-1999 г.) cоздает распределительную сеть из 240 дистрибьюторов в Северной Америке с обеспечением инжиниринговой и сервисной поддержки для продажи "микро"-газовых турбин. Энергосистема заказала изготовление 45 кВт турбины, которая должна была быть готова к поставкам в августе 1998 г. Там же указывалось, что электрический кпд турбины достигает 17%, и отмечается, что надежность газовых турбин выше, чем у дизель-генераторов.
    Это утверждение верно с точностью наоборот!
    Если взглянуть на табл. 1. то мы увидим, что в таком широком диапазоне от сотен кВт до десятков Мвт, кпд моторного привода на 13%-17% выше. Обозначенный ресурс моторного привода фирмы "Вяртсиля" означает гарантированный ресурс до полного капитального ремонта. Ресурс новых газовых турбин, -это расчетный ресурс, подтвержденный испытаниями, но не статистикой работы в реальной эксплуатации. По многочисленным источникам ресурс газовых турбин составляет 30-60 тыс. часов с уменьшением при уменьшении мощности. Ресурс дизелей зарубежного производства составляет 40-100 тысяч часов и более.

    Табл.1
    Основные технические параметры приводов электрогенераторов
    Г-газотурбинная энергоустановка, Д-газопоршневая генераторная установка Вяртсиля.
    Д - дизель из каталога Газпрома
    *Минимальная величина требуемого давления топливного газа=48 ата!!
    Эксплуатационные характеристики
    Электрический кпд (и мощность) электрогенератора с приводом от газового двигателя по данным фирмы Вяртсиля при снижении нагрузки со 100% до 50% кпд меняется слабо.
    КПД газового двигателем практически не изменяется до 25 оС.
    Мощность газовой турбины равномерно падает от -30 оС до +30 оС.
    При температурах выше 40 оС уменьшение мощности газовой турбины (от номинала) составляет 20%.
    Время запуска газового двигателя с 0 до 100% нагрузки составляет менее минуты и экстренно за 20 секунд . Для запуска газовой турбины требуется около 9 мин .
    Давление подачи газа для газовой турбины должно быть 16-20 бар.
    Давление газа в сети для газового двигателя может быть 4 бар (абс) и даже 1,15 бар для двигателя 175 SG.
    Капитальные затраты на ТЭЦ мощностью около 1 Мвт, по оценке специалистов "Вяртсиля" составляют для газотурбинной $1400/ kВт и $900/кВт для газопоршневой ЭУ.

    Применение комбинированного цикла на малых ТЭЦ, путем установки дополнительно паровой турбины нецелесообразно, так как увеличивает вдвое количество тепломеханического оборудования, площадь машзала и количество обслуживающего персонала при увеличении мощности только в 1.5 раза.
    При снижении мощности ПГУ с 325 Мвт до 22 Мвт по данным завода НПП "Машпроект" (Украина, г. Николаев) парадный кпд энергоустановки снижается с 51,5 %до 43,6%.
    КПД дизельэнергоблока (на газовом топливе) мощностью 20-10 Мвт составляет 43,3 %. Отметим, что в летнее время на ТЭЦ с дизельным агрегатом горячее водоснабжение может обеспечиваться от системы охлаждения двигателя.
    Расчеты по конкурентоспособности электростанций, базирующихся на газовых двигателях показали, что себестоимость электроэнергии на малых (1-1,5 Мвт) электростанциях составляет приблизительно 4,5 цента/ кВт.ч), а на крупных 32-40 Мвт с газовыми двигателями станциях 3,8 цента США/кВт.ч.
    Согласно аналогичному методу расчета электроэнергия конденсационной АЭС стоит примерно 5,5 центов США /кВт.ч. , а угольной КЭС примерно 5,9 центов. США/кВт.ч. По сравнению с угольной КЭС станция с газовыми двигателями вырабатывает электроэнергию на 30% дешевле.
    Стоимость электроэнергии, производимой микротурбинами, по другим данным оценивается в пределах от $0,06 до $0,10/ кВт.ч
    Ожидаемая цена за полнокомплектный газотурбинный генератор 75 кВт (США) составляет $40,000, что соответствует удельной стоимость для более крупных (более 1000 кВт) энергоустановок. Большим преимуществом энергоблоков с газовыми турбинами являются меньшие габариты, в 3 и более раз меньший вес.
    Отметим, что удельная стоимость электрогенераторных установок российского производства на базе автомобильных двигателей мощностью 50-150 КВт может оказаться в несколько раз меньше, чем упомянутые турбоблоки (США), учитывая серийность производства двигателей и меньшую стоимость материалов.
    Приведем мнение датских специалистов , оценивающих свой опыт внедрения малых энергоустановок.
    "Инвестиции в завершенную, построенную под ключ ТЭЦ, работающую на природном газе, мощностью 0,5-40 Мвт составляют 6,5-4,5 млн. датских крон на 1 МВт (1 крона была примерно равна 1 рублю летом 1998 г.). ТЭЦ комбинированного цикла мощностью ниже 50 Мвт достигнет электрического кпд= 40-44 %.
    Эксплуатационные расходы на смазочные масла, техническое обслуживание и содержание персонала на ТЭЦ достигают 0,02 дат кроны за 1 кВт.ч, производимого на газовых турбинах. На ТЭЦ с газовыми двигателями эксплуатационные расходы составляют около 0,06 дат. крон на 1 кВт.ч. При текущих ценах на электроэнергию в Дании высокая производительность газовых двигателей более, чем компенсирует их более высокие эксплуатационные расходы.
    Датские специалисты считают, что большинство ТЭЦ мощностью ниже 10 Мвт в ближайшие годы будут оснащены газовыми двигателями".

    Выводы
    Приведенные оценки, казалось бы, однозначно показывают преимущества моторного привода при малых мощностях энергоустановок.
    Однако, в настоящее время мощность предлагаемого моторного привода российского производства на природном газе не превышает мощность 800 кВт-1500 кВт (завод РУМО, Н-Новгород и Коломенский машзавод), а турбоприводы большей мощности могут предложить несколько заводов.
    Два завода в России: з-д им. Климова (С-Петербург) и Пермские Моторы готовы поставлять полнокомплектные энергоблоки мини-ТЭЦ с котлами-утилизаторами.
    В случае организации регионального сервисного центра вопросы техобслуживания и ремонта малых турбин турбин могут решаться путем замены турбины на резервную за 2-4 часа и ее дальнейшим ремонтом в заводских условиях техцентра.

    КПД газовых турбин в настоящее время может быть повышен на 20-30 % путем применения энергетического впрыска пара в газовую турбину (цикл STIG или парогазовый цикл в одной турбине). Это техническое решение в предыдущие годы было проверено в полномасштабных натурных испытаниях энергетической установки "Водолей" в г. Николаеве (Украина) НПП "Машпроект" и ПО "Заря", что позволило увеличить мощность турбоагрегата с 16 до 25 Мвт а кпд был увеличен с 32,8 %до 41,8%.
    Ничего не мешает перенести этот опыт на меньшие мощности и реализовать, таким образом, ПГУ в серийной поставке. В этом случае электрический кпд сравнивается с кпд дизелей, а удельная мощность возрастает настолько, что капитальные затраты могут быть на 50% ниже, чем на ТЭЦ с газомоторным приводом, что весьма привлекательно.

    Данное рассмотрение проведено с целью показать: что при рассмотрении вариантов строительства электростанций в России, а тем более направлений создания программы строительства энергоустановок, необходимо рассматривать не отдельные варианты, которые могут предлагать проектные организации, а широкий перечень вопросов с учетом возможностей и интересов отечественных и региональных производителей оборудования.

    Литература

    1. Power Value, Vol.2, No.4, July/August 1998 , USA, Ventura, CA.
    The Small Turbine Marketplace
    Stan Price, Northwest Energy Efficiency Council, Seattle, Washington and Portland, Oregon
    2. Новые направления энергопроизводства Финляндии
    АСКО ВУОРИНЕН, доц. техн. наук, АО Вяртсила NSD Corporation, "ЭНЕРГЕТИК" -11.1997. стр.22
    3. Централизованное теплоснабжение. Исследование и разработка технологии в Дании. Министерство энергетики. Управление энергетики,1993 г.
    4. DIESEL POWER PLANTS. S.E.M.T. PIELSTICK. Проспект выставки POWERTEK 2000, 14-17 марта 2000 г.
    5. Электростанции и электроагрегаты, рекомендованные к применению на объектах ОАО "ГАЗПРОМ". КАТАЛОГ. Москва 1999 г.
    6. Дизельная электрическая станция. Проспект ОАО "Брянский машиностроительный завод". 1999г. Проспект выставки POWERTEK 2000/
    7. НК-900Э Блочно-модульная теплоэлектростанция. ОАО Самарский научно-технический комплекс им. Н.Д. Кузнецова. Проспект выставки POWERTEK 2000

    Тепловая турбина постоянного действия, в которой тепловая энергия сжатого и нагретого газа (обычно продуктов сгорания топлива) преобразуется в механическую вращательную работу на валу ; является конструктивным элементом газотурбинного двигателя.

    Нагревание сжатого газа, как правило, происходит в камере сгорания. Также можно осуществлять нагрев в ядер-ном реакторе и др. Впервые газовые турбины появились в конце XIX в. в качестве газотурбинного двигателя и по конструктивному выполнению приближались к паровой турбине. Газовая турбина конструктивно представляет собой целый ряд упорядоченно расположенных неподвижных лопаточных венцов аппарата сопла и вращающихся венцов рабочего колеса, которые в результате образуют проточную часть. Ступень турбины представляет собой сопловой аппарат, совмещенный с рабочим колесом . Ступень состоит из статора, в который входят стационарные детали (корпус, сопловые лопатки, бандажные кольца), и ротора , представляющего собой совокупность вращающихся частей (таких, как рабочие лопатки, диски, вал).

    Классификация газовой турбины осуществляется по многим конструктивным особенностям: по направлению газового потока, количеству ступеней, способу использования перепада тепла и способу подвода газа к рабочему колесу. По направлению газового потока можно различить газовые турбины осевые (самые распространенные) и радиальные, а также диагональные и тангенциальные. В осевых газовых турбинах поток в меридиональном сечении транспортируется в основном вдоль всей оси турбины; в радиальных турбинах, наоборот, перпендикулярно оси. Радиальные турбины подразделяются на центростремительные и центробежные. В диагональной турбине газ течет под некоторым углом к оси вращения турбины. У рабочего колеса тангенциальной турбины отсутствуют лопатки, такие турбины применяются при очень малом расходе газа, обычно в измерительных приборах. Газовые турбины бывают одно-, двух- и многоступенчатые.

    Количество ступеней определяется многими факторами: назначением турбины, ее конструктивной схемой, общей мощностью и развиваемой одной ступенью, а также срабатываемым перепадом давления. По способу использования располагаемого перепада тепла различают турбины со ступенями скорости, у которых в рабочем колесе происходит только поворот потока, без изменения давления (активные турбины), и турбины со ступенями давления, в них давление уменьшается как в сопловых аппаратах, так и на рабочих лопатках (реактивные турбины). В парциальных газовых турбинах подвод газа к рабочему колесу происходит по части окружности соплового аппарата или по его полной окружности.

    В многоступенчатой турбине процесс преобразования энергии состоит из целого ряда последовательных процессов в отдельных ступенях. В межлопаточные каналы соплового аппарата подается сжатый и подогретый газ с начальной скоростью, где в процессе расширения происходит преобразование части располагаемого теплоперепада в кинетическую энергию струи вытекания. Дальнейшее расширение газа и преобразование теплоперепада в полезную работу происходят в межлопаточных каналах рабочего колеса. Газовый поток, воздействуя на рабочие лопатки, создает крутящий момент на главном валу турбины. При этом происходит уменьшение абсолютной скорости газа. Чем ниже эта скорость, тем большая часть энергии газа преобразовалась в механическую работу на валу турбины.

    КПД характеризует эффективность газовых турбин, представляющую собой отношение работы, снимаемой с вала, к располагаемой энергии газа перед турбиной. Эффективный КПД современных многоступенчатых турбин довольно высок и достигает 92-94%.

    Принцип работы газовой турбины состоит в следующем: газ нагнетается в камеру сгорания компрессором , перемешивается с воздухом, формирует топливную смесь и поджигается. Образовавшиеся продукты горения с высокой температурой (900-1200 °С) проходят через несколько рядов лопаток, установленных на валу турбины, и приводят к вращению турбины. Полученная механическая энергия вала передается через редуктор генератору , вырабатывающему электричество.

    Тепловая энергия выходящих из турбины газов попадает в теплоутилизатор. Также вместо производства электричества механическая энергия турбины может быть использована для работы различных насосов , компрессоров и т. п. Наиболее часто используемым видом топлива для газовых турбин является природный газ, хотя это не может исключить возможности использования других видов газообразного топлива. Но при этом газовые турбины очень капризны и предъявляют повышенные требования к качеству его подготовки (необходимы определенные механические включения, влажность).

    Температура исходящих из турбины газов составляет 450-550 °С. Количественное соотношение тепловой энергии к электрической у газовых турбин составляет от 1,5: 1 до 2,5: 1, что позволяет строить когенерационные системы, различающиеся по типу теплоносителя:

    1) непосредственное (прямое) использование отходящих горячих газов;
    2) производство пара низкого или среднего давления (8-18 кг/см2) во внешнем котле;
    3) производство горячей воды (лучше, когда требуемая температура превышает 140 °С);
    4) производство пара высокого давления.

    Большой вклад в развитие газовых турбин внесли советские ученые Б. С. Стечкин, Г. С. Жирицкий, Н. Р. Брилинг, В. В. Уваров, К. В. Холщевиков, И. И. Кириллов и др. Значительных успехов в создании газовых турбин для стационарных и передвижных газотурбинных установок достигли зарубежные фирмы (швейцарские «Броун-Бовери», в которой работал известный словацкий ученый А. Стодола, и «Зульцер», американская «Дженерал электрик» и др.).

    В дальнейшем развитие газовых турбин зависит от возможности повышения температуры газа перед турбиной. Это связано с созданием новых жаропрочных материалов и надежных систем охлаждения рабочих лопаток при значительном усовершенствовании проточной части и др.

    Благодаря повсеместному переходу в 1990-е гг. на использование природного газа в качестве основного топлива для электроэнергетики газовые турбины заняли существенный сегмент рынка. Несмотря на то что максимальная эффективность оборудования достигается на мощностях от 5 МВт и выше (до 300 МВт), некоторые производители выпускают модели в диапазоне 1-5 МВт.

    Применяются газовые турбины в авиации и на электростанциях.

    • Предыдущее: ГАЗОАНАЛИЗАТОР
    • Следующее: ГАЗОВЫЙ ДВИГАТЕЛЬ
    Категория: Промышленность на Г 


    В состав электростанций относительно небольшой мощности могут входить как газотурбинные двигатели (ГТД), так и поршневые (ПД). В связи с этим у заказчиков часто возникает вопрос, какой привод предпочтительнее . И, хотя ответить на него однозначно невозможно, цель настоящей статьи - попытка разобраться в этом вопросе.

    Введение

    Выбор типа двигателя, а также их количества для привода электрогенераторов на электростанции любой мощности является сложной технико-экономической задачей. Попытки сравнить между собой в качестве привода поршневые и газотурбинные двигатели чаще всего делаются при условии использования в качестве топлива природного газа. Их принципиальные преимущества и недостатки анализировались в технической литературе , в рекламных проспектах производителей электростанций с поршневыми двигателями и даже на страницах Интернета.

    Как правило, приводятся обобщенные сведения о разнице в расходах топлива, в стоимости двигателей без всякого учета их мощности и условий работы. Часто отмечается, что состав электростанций мощностью 10-12 МВт предпочтительнее формировать на базе поршневых двигателей, а большей мощности - на базе газотурбинных. Принимать эти рекомендации как аксиому не следует. Очевидно одно: каждый тип двигателя имеет свои преимущества и недостатки, и при выборе привода нужны некоторые, хотя бы ориентировочные, количественные критерии их оценки.

    В настоящее время на российском энергетическом рынке предлагается достаточно широкая номенклатура как поршневых, так и газотурбинных двигателей. Среди поршневых превалируют импортные двигатели, а среди газотурбинных - отечественные.

    Сведения о технических характеристиках газотурбинных двигателей и электростанциях на их базе, предлагаемых для эксплуатации в России, в последние годы регулярно публикуются в «Каталоге газотурбинного оборудования» .

    Аналогичные сведения о поршневых двигателях и электростанциях, в состав которых они входят, можно почерпнуть только из рекламных проспектов российских и иностранных фирм, поставляющих это оборудование. Информация о стоимости двигателей и электростанций чаще всего не публикуется, а опубликованные сведения часто не соответствуют действительности.

    Непосредственное сравнение поршневых и газотурбинных двигателей

    Обработка имеющейся информации позволяет сформировать приведенную ниже таблицу, которая содержит как количественную, так и качественную оценку преимуществ и недостатков поршневых и газотурбинных двигателей. К сожалению, часть характеристик взята из рекламных материалов, проверить полную достоверность которых чрезвычайно трудно или практически невозможно. Необходимые для проверки данные о результатах работы отдельных двигателей и электростанций, за редким исключением , не публикуются.

    Естественно, что приведенные цифры являются обобщенными, для конкретных двигателей они будут строго индивидуальными. Кроме того, некоторые из них даны в соответствии со стандартами ISO, а фактические условия работы двигателей существенно отличаются от стандартных.

    Представленные сведения дают только качественную характеристику двигателей и не могут использоваться при подборе оборудования для конкретной электростанции. К каждой позиции таблицы можно дать некоторые комментарии.

    Показатель Тип двигателя
    Поршневой Газотурбинный
    Диапазон единичных мощностей двигателей (ISO), МВт 0.1 - 16.0 0.03 - 265.0
    Изменение мощности при постоянной температуре наружного воздуха Более устойчив при снижении нагрузки на 50%. КПД снижается на 8-10% Менее устойчив при снижении нагрузки на 50%. КПД снижается на 50%
    Влияние температуры наружного воздуха на мощность двигателя Практически не влияет При снижении температуры до -20°C мощность увеличивается примерно на 10-20%, при повышении до +30°C - уменьшается на 15-20%
    Влияние температуры наружного воздуха на КПД двигателя Практически не влияет При снижении температуры до -20°C КПД увеличивается примерно на 1.5% абс.
    Топливо Газообразное, жидкое Газообразное, жидкое (по спецзаказу)
    Необходимое давление топливного газа, МПа 0.01 - 0.035 Более 1.2
    КПД по выработке электроэнергии при работе на газе (ISO) от 31% до 48% В простом цикле от 25% до 38%, в комбинированном - от 41% до 55%
    Соотношение электрической мощности и количества утилизированной теплоты, МВт/МВт (ISO) 1/(0.95-1.3) 1/(1.4-4.0)
    Возможности использования утилизированной теплоты выхлопных газов Только на нагрев воды до температуры выше 115°C На производство пара для выработки электроэнергии, холода, опреснения воды и т.д., на нагрев воды до температуры 150°C
    Влияние температуры наружного воздуха на количество утилизированной теплоты Практически не влияет При снижении температуры воздуха количество теплоты при наличии регулируемого лопаточного аппарата у газовой турбины почти не уменьшается, при его отсутствии - уменьшается
    Моторесурс, ч Больше: до 300 000 для среднеоборотных двигателей Меньше: до 100 000
    Темп рост эксплуатационных затрат с увеличением срока службы Менее высокий Более высокий
    Масса энергоблока (двигатель с электрогенератором и вспомогательным оборудованием), кг/кВт Существенно выше: 22.5 Существенно ниже: 10
    Габариты энергоблока, м Больше: 18.3х5.0х5.9 при единичной мощности агрегата 16МВт без системы охлаждения Меньше: 19.9х5.2х3.8 при единичной мощности агрегата 25МВт
    Удельный расход масла, г/кВт*ч 0.3 - 0.4 0.05
    Количество пусков Не ограничено и не влияет на сокращение моторесурса Не ограничено, но влияет на сокращение моторесурса
    Ремонтопригодность Ремонт может производиться на месте и требует меньше времени Ремонт возможен на специальном предприятии
    Стоимость капремонта Дешевле Дороже
    Экология Удельно - в мг/м3 - больше, но объем вредных выбросов в м3 меньше Удельно - в мг/м3 - меньше, но объем выбросов в м3 больше
    Стоимость энергоблока Меньше при единичной мощности двигателя до 3.5МВт Меньше при единичной мощности двигателя более 3.5МВт

    На энергетическом рынке представлен очень большой выбор двигателей, имеющих существенные различия в технических характеристиках. Конкуренция между двигателями рассматриваемых типов возможна только в диапазоне единичной электрической мощности до 16 МВт. При более высоких мощностях газотурбинные двигатели вытесняют поршневые практически полностью.

    Необходимо учитывать, что каждый двигатель имеет индивидуальные характеристики, и только их следует использовать при выборе типа привода. Это позволяет формировать состав основного оборудования электростанции заданной мощности в нескольких вариантах, варьируя, в первую очередь, электрическую мощность и количество необходимых двигателей. Многовариантность затрудняет выбор предпочтительного типа двигателя.

    О КПД поршневых и газотурбинных двигателей

    Важнейшей характеристикой любого двигателя в составе электростанций является КПД по выработке электроэнергии (КПДэ), определяющий основной, но не полный объем потребления газа. Обработка статистических данных по значениям КПДэ позволяет наглядно показать области применения, в которых по этому показателю один тип двигателя имеет преимущества перед другим.

    Взаимное расположение и конфигурация трех выделенных на рис. 1 зон, в пределах которых находятся точечные изображения значений электрического КПД различных двигателей, позволяет сделать некоторые выводы:

    • даже в пределах одного типа двигателей одинаковой мощности наблюдается значительный разброс значений КПД по выработке электроэнергии;
    • при единичной мощности более 16 МВт газотурбинные двигатели в комбинированном цикле обеспечивают значение КПДэ выше 48% и монопольно владеют рынком;
    • электрический КПД газотурбинных двигателей мощностью до 16 МВт, работающих как в простом, так и в комбинированном цикле, ниже (иногда очень существенно), чем у поршневых двигателей;
    • газотурбинные двигатели единичной мощностью до 1 МВт, появившиеся на рынке в последнее время, по значению КПДэ превосходят двигатели мощностью 2-8 МВт, наиболее часто применяемые сегодня в составе электростанций;
    • характер изменения КПДэ газотурбинных двигателей имеет три зоны: две с относительно постоянным значением - 27 и 36% соответственно и одну с переменным - от 27 до 36%; в пределах двух зон КПДэ слабо зависит от электрической мощности;
    • значение КПД по выработке электроэнергии поршневых двигателей находится в постоянной зависимости от их электрической мощности.

    Однако эти факторы не являются основанием для того, чтобы отдать приоритет поршневым двигателям. Даже если электростанция будет вырабатывать только электрическую энергию, при сравнении вариантов состава оборудования с различным типом двигателей потребуется выполнить экономические расчеты. Необходимо доказать, что стоимость сэкономленного газа окупит разницу в стоимости поршневых и газотурбинных двигателей, а также дополнительного оборудования к ним. Количество сэкономленного газа не может быть определено, если неизвестен режим работы станции по отпуску электроэнергии в зимнее и летнее время. Идеально, если известны необходимые электрические нагрузки - максимальные (зимний рабочий день) и минимальные (летний выходной день).

    Использование и электрической и тепловой энергии

    Если же электростанция должна производить не только электрическую, но и тепловую энергию, то потребуется определить, за счет каких источников можно покрыть тепловое потребление. Таких источников, как правило, два - утилизированная теплота двигателей и/или котельная.

    У поршневых двигателей утилизируется теплота охлаждающего масла, сжатого воздуха и выхлопных газов, у газотурбинных - только теплота выхлопных газов. Основное количество теплоты утилизируется из выхлопных газов с помощью утилизационных теплообменников (УТО).

    Количество утилизированной теплоты в значительной степени зависит от режима работы двигателя по выработке электроэнергии и от климатических условий. Неверная оценка режимов работы двигателей в зимнее время приведет к ошибкам в определении количества утилизированной теплоты и неправильному выбору установленной мощности котельной.

    Графики на рис.2 показывают возможности отпуска утилизированной теплоты от газотурбинных и поршневых двигателей для целей теплоснабжения. Точки на кривых соответствуют данным заводов-изготовителей о возможностях имеющейся техники для утилизации теплоты. На двигателе одной и той же электрической мощности производители устанавливают различные УТО - исходя из конкретных задач.

    Преимущества газотурбинных двигателей в части выработки тепла бесспорны. Особенно это касается двигателей электрической мощностью 2-10 МВт, что объясняется относительно низким значением их электрического КПД. По мере роста КПДэ газотурбинных двигателей количество утилизированной теплоты должно неизбежно снижаться.

    При выборе поршневого двигателя для электро- и теплоснабжения конкретного объекта необходимость использования котельной в составе электростанции почти не вызывает сомнений. Работа котельной требует увеличения расхода газа сверх необходимого для выработки электроэнергии. Возникает вопрос, как отличаются расходы газа на энергоснабжение объекта, если в одном случае используются только ГТД с утилизацией теплоты выхлопных газов, а в другом - поршневые двигатели с утилизацией теплоты и котельная. Только после досконального изучения особенностей потребления объектом электроэнергии и тепла можно ответить на этот вопрос.

    Если принять, что расчетное потребление тепла объектом может быть полностью покрыто утилизированной теплотой ГТД, а недостаток теплоты при использовании поршневого двигателя компенсируется котельной, то можно выявить характер изменения суммарного расхода газа на энергоснабжение объекта.

    Используя данные на рис. 1 и 2, можно для характерных точек зон, отмеченных на рис. 1, получить сведения об экономии или перерасходе газа при использовании приводов различного типа. Они представлены в таблице:

    Абсолютные значения экономии газа справедливы только для конкретного объекта, характеристики которого были заложены в расчет, но общий характер зависимости отражен правильно, а именно:
    при относительно близких значениях электрического КПД (разница до 10%) использование поршневых двигателей и котельной приводит к перерасходу топлива;

    • при относительно близких значениях электрического КПД (разница до 10%) использовние поршневых двигателей и котельной приводит к перерасходу топлива;
    • при разнице значений КПДэ более 10% для работы поршневых двигателей и котельной потребуется меньше газа, чем для ГТД;
    • существует некая точка с максимальной экономией газа при использовании поршневых двигателей и котельной, где разница между значениями КПДэ двигателей равна 13-14%;
    • чем выше значение КПДэ поршневого двигателя и ниже - газотурбинного, тем больше экономия газа.

    В качестве дополнения

    Как правило, задача не ограничивается выбором типа привода, требуется определить состав основного оборудования электростанции - тип агрегатов, их количество, вспомогательное оборудование.

    Выбор двигателей для производства нужного количества электроэнергии определяет возможности выработки утилизированной теплоты. При этом надо учесть все особенности изменения технических характеристик двигателя, связанные с климатическими условиями, с характером электрической нагрузки, и определить влияние этих изменений на отпуск утилизированной теплоты.

    Необходимо также помнить, что в состав электростанции входят не только двигатели. На ее площадке обычно располагается свыше десятка вспомогательных сооружений, работа которых также влияет на технические и экономические показатели электростанции.

    Как уже указывалось, состав оборудования электростанции с технической точки зрения можно сформировать в нескольких вариантах, поэтому его окончательный выбор может быть обоснован только с экономических позиций.

    При этом знание характеристик конкретных двигателей и их влияние на экономические показатели будущей электростанции чрезвычайно важно. При выполнении экономических расчетов неизбежен учет моторесурса, ремонтопригодности, сроков проведения и стоимости капитальных ремонтов. Эти показатели также индивидуальны для каждого конкретного двигателя независимо от его типа.

    Нельзя исключать влияние экологических факторов на выбор типа двигателей для электростанции. Состояние атмосферы в районе предполагаемой эксплуатации электростанции может стать основным фактором при определении типа двигателя (несмотря ни на какие экономические соображения).

    Как уже отмечалось, данные о стоимости двигателей и электростанций на их базе не публикуются. Изготовители или поставщики оборудования ссылаются на возможную разницу в комплектации, условия доставки и другие причины. Только после заполнения фирменного опросного листа будут представлены цены. Поэтому сведения в первой таблице о том, что стоимость поршневых двигателей мощностью до 3,5 МВт ниже стоимости газотурбинных такой же мощности, могут оказаться неверными.

    Заключение

    Таким образом, в классе единичной мощности до 16 МВт нельзя отдавать однозначное предпочтение ни газотурбинным, ни поршневым двигателям. Только тщательный анализ ожидаемых режимов работы конкретной электростанции по выработке электроэнергии и теплоты (с учетом особенностей конкретных двигателей и многочисленных экономических факторов) позволит полностью обосновать выбор типа двигателя. Определить состав оборудования на профессиональном уровне может специализированная фирма.

    Использованная литература

    1. Габич А. Применение газотурбинных двигателей малой мощности в энергетике // Газотурбинные технологии. 2003, № 6. С. 30-31.
    2. Буров В. Д. Газотурбинные и газопоршневые энергетические установки малой мощности // Горныйжурнал. 2004, специальный выпуск. С. 87-89,133.
    3. Каталог газотурбинного оборудования // Газотурбинные технологии. 2005. С. 208.
    4. Салихов А. А., Фаткулин Р. М., Абрахманов P. P., Щаулов В. Ю. Развитие мини-ТЭЦ с применением газопоршневых двигателей в Республике Башкортостан // Новости теплоснабжения. 2003, № 11. С. 24-30.

    Данная статья с незначительными изменениями взята из журнала "Турбины и дизели", №1(2) за 2006г.
    Автор - В.П. Вершинский, ООО "Газпромэнергосервис".

    Разработка новых типов ГТУ, растущие темпы спроса на газ по сравнению с другими видами топлива, масштабные планы промышленных потребителей по созданию собственных мощностей обуславливают растущий интерес к газотурбинному строительству.

    Р ынок малой генерации имеет большие перспективы развития. Эксперты прогнозируют увеличение спроса на распределенную энергетику с 8% (на текущий момент) до 20% (к 2020 году). Подобная тенденция объясняется сравнительно низким тарифом на электроэнергию (в 2-3 раза ниже, чем тариф на э/энергию от централизованной сети). Кроме этого, по словам Максима Загорнова, члена генерального совета «Деловой России», президента Ассоциации малой энергетики Урала, директора группы компаний «МКС», малая генерация надежнее сетевой: в случае аварии на внешней сети снабжение электроэнергией не прекращается. Дополнительное преимущество децентрализованной энергетики - скорость ввода в эксплуатацию: 8-10 месяцев в отличие от 2-3 лет создания и присоединения сетевых линий.

    Сопредседатель комитета «Деловой России» по энергетике Денис Черепанов утверждает, что за собственной генерацией будущее. По словам первого заместителя председателя комитета Государственной Думы по энергетике Сергея Есякова, в случае распределенной энергетики в цепочке «энергия - потребитель» решающим звеном является именно потребитель, а не энергетика. При собственной генерации электроэнергии потребитель заявляет необходимые мощности, комплектации и даже вид топлива, экономя, при этом, на цене киловатта полученной энергии. Кроме прочего, эксперты считают, что можно получить дополнительную экономию, если реализовать работу энергоустановки в режиме когенерации: утилизированная тепловая энергия пойдет на отопление. Тогда срок окупаемости генерирующей энергоустановки значительно снизится.

    Наиболее активно развивающимся направлением распределенной энергетики является строительство газотурбинных электростанций малой мощности. Газотурбинные электростанции предназначены для эксплуатации в любых климатических условиях в качестве основного или резервного источника электроэнергии и тепла для объектов производственного и бытового назначения. Использование таких электростанций в отдаленных районах позволяет получить значительную экономию средств за счет исключения издержек на строительство и эксплуатацию протяженных линий электропередач, а в центральных районах - повысить надежность электрического и теплового снабжения как отдельных предприятий и организаций, так и территорий в целом. Рассмотрим некоторые газовые турбины и газотурбинные установки, которые предлагают для строительства газотурбинных электростанций на рынке России известные производители.

    General Electric

    Решения GE на основе аэропроизводных турбин отличаются высокой надежностью и подходят для применения в целом ряде отраслей: от нефтегазой промышленности до ЖКХ. В частности, в малой генерации активно используются газотурбинные установки GE семейства LM2500 мощностью от 21 до 33 МВт и КПД до 39%. LM2500 применяют в качестве механического привода и привода электрогенератора, они работают на электростанциях в простом, комбинированном цикле, режиме когенерации, морских платформах и трубопроводах.

    За последние 40 лет турбины GE данной серии являются наиболее продаваемыми в своем классе. Всего в мире установлено более 2000 турбин данной модели с общей наработкой более 75 миллионов часов.

    Основные характеристики турбин LM2500: легковесная и компактная конструкция для быстрого монтажа и простоты обслуживания; выход на полную мощность с момента запуска за 10 минут; высокие показатели КПД (в простом цикле), надежности и доступности в своем классе; возможность использования двухтопливных камер сгорания для дистиллята и природного газа; возможность использования в качестве топлива керосина, пропана, коксового газа, этанола и СПГ; низкий уровень выбросов NOx с использованием камер сгорания DLE или SAC; коэффициент надежности - более 99%; коэффициент готовности - более 98%; выбросы NOx - 15 ppm (модификация DLE).

    Для обеспечения клиентов надежной поддержкой на всем протяжении жизненного цикла генерирующего оборудования GE открыла специализированный Центр энергетических технологий в Калуге. Он предлагает заказчикам современные решения для обслуживания, инспекции и ремонта газовых турбин. На предприятии внедрена система менеджмента качества в соответствии со стандартом ISO 9001.

    Kawasaki Heavy Industries

    Японская компания Kawasaki Heavy Industries, Ltd. (KHI) - многопрофильная машиностроительная компания. Важное место в ее производственной программе занимают газовые турбины.

    В 1943 году Kawasaki создала первый в Японии газотурбинный двигатель и в настоящее время является одним из признанных мировых лидеров в производстве ГТУ малой и средней мощности, накопив референции по более, чем 11 000 установок.

    Имея в приоритете экологичность и эффективность, компания достигла больших успехов в развитии газотурбинных технологий и активно ведет перспективные разработки, в том числе, в области новых источников энергии в качестве альтернативы ископаемому топливу.

    Имея в активе хорошие наработки в криогенных технологиях, технологиях производства, хранения и транспортировки сжиженных газов, Kawasaki ведет активные исследования и ОКР в области применения водорода как топлива.

    В частности, уже сейчас компания имеет опытные образцы турбин, использующих водород как добавку к метановому топливу. В перспективе ожидаются турбины, для которых, намного более калорийный и абсолютно экологически безопасный, водород заменит углеводороды.

    ГТУ Kawasaki серий GPB спроектированы для работы в базовой нагрузке, включая как параллельные, так и изолированные схемы взаимодействия с сетью, при этом основу мощностного ряда составляют машины от 1,7 до 30 МВт.

    В модельном ряду есть турбины, использующие для подавления вредных выбросов инжекцию пара, и применяющие доработанную инженерами компанию технологию DLE.

    Электрический КПД, в зависимости от цикла генерации и мощности, соответственно, от 26,9% у GPB17 и GPB17D (турбины M1A-17 и M1A-17D) до 40,1% у GPB300D (турбина L30A). Электрическая мощность - от 1700 до 30 120 кВт; тепловая мощность - от 13 400 до 8970 кДж/кВтч; температура выхлопных газов - от 521 до 470°С; расход выхлопных газов - от 29,1 до 319,4 тыс. м3/ч; NOx (при 15% О2) - 9/15 ppm для газовых турбин M1А-17D, М7А-03D, 25 ppm - для турбины M7A-02D и 15 ppm для турбин L20A и L30A.

    По эффективности ГТУ Kawasaki, каждая в своем классе, являются либо мировым лидером, либо одним из лидеров. Общая тепловая эффективность энергоблоков в когенерационных конфигурациях достигает 86-87%. Ряд ГТУ компания выпускает в двухтопливном (природный газ и жидкое топливо) исполнении с автоматическим переключением. У российских потребителей в настоящий момент наиболее востребованы три модели ГТУ - GPB17D, GPB80D и GPB180D.

    Газовые турбины Kawasaki отличают: высокая надежность и большой ресурс; компактный дизайн, что особенно привлекательно при замене оборудования существующих генерирующих мощностей; удобство обслуживания за счет разрезной конструкции корпуса, съемных горелок, оптимально расположенных инспекционных отверстий и др., что упрощает осмотр и техобслуживание, в том числе силами персонала пользователя;

    Экологичность и экономичность. Камеры сгорания турбин Kawasaki спроектированы с применением самых передовых методов, что позволило оптимизировать процесс горения и достичь лучших показателей эффективности турбины, а также уменьшить содержание NOx и других вредных веществ в выхлопе. Экологические показатели улучшены также за счет применения доработанной технологии сухого подавления выбросов (DLE);

    Возможность использования широкого спектра топлив. Могут применяться природный газ, керосин, дизельное топливо, легкие мазуты типа «А», а также попутный нефтяной газ;

    Надежное послепродажное обслуживание. Высокий уровень обслуживания, включая бесплатную систему онлайн-мониторинга (TechnoNet) с предоставлением отчетов и прогнозов, техническую поддержку силами высококвалифицированного персонала, а также замену по трейд-ин газотурбинного двигателя в ходе капитального ремонта (простой ГТУ сокращается до 2-3 недель) и т.д.

    В сентябре 2011 г. Kawasaki представила новейшую систему камеры сгорания, позволившую опустить уровень выбросов NOx до менее чем 10 ppm для газотурбинного двигателя M7A-03, что даже ниже, чем требуют нынешние нормативы. Один из подходов компании к проектированию состоит в том, чтобы создавать новую технику, отвечающую не только современным, но и будущим, более жестким, требованиям к экологическим показателям.

    В высокоэффективной ГТУ GPB50D класса 5 МВт с турбиной Kawasaki M5A-01D применены новейшие апробированные технологии. Высокая эффективность установки делает ее оптимальной для электро- и когенерации. Также компактный дизайн GPB50D особенно выгоден при модернизации существующих предприятий. Номинальный электрический КПД 31,9% - лучший в мире среди установок класса 5 МВт.

    Турбина M1A-17D за счет применения камеры сгорания оригинальной конструкции с сухим подавлением выбросов (DLE) имеет отличные для своего класса показатели экологичности (NOx < 15 ppm) и эффективности.

    Сверхнизкий показатель массы турбины (1470 кг), минимальный в классе, обусловлен широким применением композитных материалов и керамики, из которых изготовлены, например, лопатки рабочего колеса. Керамика более устойчива к работе при повышенных температурах, менее склонна к загрязнению, чем металлы. ГТУ имеет электрический КПД близкий к 27%.

    В России к настоящему времени Kawasaki Heavy Industries, Ltd. в сотрудничестве с российскими компаниями реализовала ряд успешных проектов:

    Мини-ТЭС «Центральная» во Владивостоке

    По заказу АО «Дальневосточной энергетической управляющей компании» (АО «ДВЭУК») для ТЭС «Центральная» поставлено 5 ГТУ GPB70D (M7A-02D). Станция обеспечивает электроэнергией и теплом потребителей центральной части застройки острова Русский и кампус Дальневосточного федерального университета. ТЭС «Центральная» - первый энергообъект в России с турбинами Kawasaki.

    Мини-ТЭС «Океанариум» во Владивостоке

    Этот проект также осуществлен ОАО «ДВЭУК» для энергоснабжения расположенного на острове научно-образовательного комплекса «Приморский океанариум». Поставлено две ГТУ GPB70D.

    ГТУ производства Kawasaki в ПАО «Газпром»

    Российский партнер Kawasaki, ООО «МПП Энерготехника», на основе газовой турбины M1A-17D выпускает контейнерную электростанцию «Корвет 1,7К» для установки на открытых площадках с диапазоном температур окружающего воздуха от -60 до + 40 °С.

    В рамках договора о сотрудничестве разработаны и на производственных мощностях «МПП «Энерготехника» собраны пять ЭГТЭС КОРВЕТ-1,7К. Зоны ответственности компаний в данном проекте распределялись следующим образом: Kawasaki поставляет газотурбинный двигатель M1A-17D и системы управления турбиной, Siemens AG - высоковольтный генератор. ООО «МПП «Энерготехника» производит блок-контейнер, выхлопное и воздухозаборное устройство, систему управления энергоблоком (в том числе систему возбуждения ШУВГм), электротехническое оборудование - основное и вспомогательное, комплектует все системы, осуществляет сборку и поставку комплектной электростанции, а также - реализацию АСУ ТП.

    ЭГТЭС Корвет-1,7К прошла межведомственные испытания и рекомендована для применения на объектах ПАО «Газпром». Газотурбинный энергоблок разработан ООО «МПП «Энерготехника» по техническому заданию ПАО «Газпром» в рамках Программы научно-технического сотрудничества ПАО «Газпром» и Агентства природных ресурсов и энергетики Японии.

    Турбина для ПГУ 10 МВт в НИУ МЭИ

    Kawasaki Heavy Industries Ltd., изготовила и поставила комплектную газотурбинную установку GPB80D номинальной мощностью 7,8 MВт для Национального Исследовательского Университета «МЭИ», расположенного в Москве. ТЭЦ МЭИ является учебно-практической и, вырабатывая электричество и тепло в промышленных масштабах, обеспечивает ими сам Московский энергетический институт и поставляет их в коммунальные сети г. Москвы.

    Расширение географии проектов

    Компания Kawasaki, обращая внимание на преимущества развития местной энергетики в направлении распределенной генерации, предложила начать реализацию проектов с применением газотурбинных установок минимальной мощности.

    Mitsubishi Hitachi Power Systems

    Модельный ряд турбин Н-25 представлен в диапазоне мощности 28-41 МВт. Полный комплекс работ по производству турбины, включая НИОКР и центр удаленного мониторинга, осуществляется на заводе в г. Хитачи, Япония, компанией MHPS (Mitsubishi Hitachi Power Systems Ltd.). Ее образование приходится на февраль 2014 г. благодаря слиянию генерирующих секторов признанных лидеров машиностроения Mitsubishi Heavy Industries Ltd. и Hitachi Ltd.

    Модели H-25 нашли широкое применение по всему миру для работы как в простом цикле благодаря высокому КПД (34-37%), так и в комбинированном цикле в конфигурации 1×1 и 2×1 с КПД 51-53%. Имея высокие температурные показатели выхлопных газов, ГТУ также успешно зарекомендовала себя для работы в режиме когенерации с суммарным КПД станции более 80%.

    Многолетние компетенции в производстве газовых турбин широкого диапазона мощностей и продуманный дизайн одновальной индустриальной турбины отличают Н-25 высокой надежностью с коэффициентом готовности оборудования более 99%. Суммарное время наработки модели превысило 6,3 млн ч за второе полугодие 2016 г. Современная ГТУ выполнена с горизонтальным осевым разъемом, что обеспечивает удобство ее обслуживания, а также возможность замены частей горячего тракта по месту эксплуатации.

    Противоточная трубчато-кольцевая камера сгорания обеспечивает стабильное горение на различных видах топлива, таких как природный газ, дизельное топливо, сжиженный нефтяной газ, уходящие топочные газы, коксовый газ и пр. Камера может быть выполнена в варианте с диффузионным режимом горения, а также сухой низкоэмиссионной предварительного смешивания газовоздушной смеси (DLN). Газотурбинный двигатель H-25 представляет собой 17-ступенчатый осевой компрессор, соединенный с трехступенчатой активной турбиной.

    Примером надежной эксплуатации ГТУ Н-25 на объектах малой генерации в России является работа в составе когенерационного блока для собственных нужд завода АО «Аммоний» в г. Менделеевске, Республика Татарстан. Когенерационный блок обеспечивает производственную площадку электроэнергией 24 МВт и паром 50 т/ч (390°С / 43 кг/см3). В ноябре 2017 г. на площадке была успешно проведена первая инспекция системы сгорания турбины, подтвердившая надежную работу узлов и агрегатов машины в условиях высоких температур.

    В нефтегазовом секторе ГТУ Н-25 были применены для работы площадки объединенного берегового технологического комплекса (ОБТК) Сахалин II компании «Сахалин Энерджи Инвестмент Компани, Лтд.» ОБТК расположен в 600 км к северу от Южно-Сахалинска в районе выхода на берег морского газопровода и является одним из наиболее важных объектов компании, отвечающим за подготовку газа и конденсата для последующей передачи по трубопроводу на терминал отгрузки нефти и завод по производству СПГ. В состав технологического комплекса входят четыре газовые турбины Н-25, находящиеся в промышленной эксплуатации с 2008 г. Когенерационный блок на базе ГТУ Н-25 максимально интегрирован в комплексную энергосистему ОБТК, в частности, тепло выхлопных газов турбины используется для подогрева сырой нефти для нужд нефтепереработки.

    Промышленные генераторные газотурбинные установки «Сименс» (далее ГТУ) помогут справиться с трудностями динамично развивающегося рынка распределенной генерации. ГТУ единичной номинальной мощностью от 4 до 66 МВт полностью отвечают высоким требованиям в области промышленной комбинированной выработки энергии, в плане эффективности станции (до 90%), надежности эксплуатации, гибкости обслуживания и экологической безопасности, обеспечивая низкие затраты при полном сроке эксплуатации и высокую отдачу от инвестиций. Опыт компании «Сименс» в области строительства промышленных ГТУ и строительства ТЭС на их базе, насчитывает более чем 100 лет.

    ГТУ «Сименс» мощностью от 4 до 66 МВт используются небольшими энергокомпаниями, независимыми производителями электроэнергии (например, промышленными предприятиями), а также в нефтегазовой отрасли. Применение технологий распределенной генерации электроэнергии с комбинированной выработкой тепловой энергии, позволяет отказаться от инвестирования в многокилометровые линии электропередач, минимизировав расстояние между источником энергии и объектом, ее потребляющим, достичь серьезной экономии средств, покрыв отопление промышленных предприятий и объектов инфраструктуры за счет утилизации тепла. Стандартная Мини-ТЭС на базе ГТУ «Сименс» может быть построена в любом месте, где есть доступ к источнику топлива, или оперативного его подвода.

    SGT-300 - промышленная ГТУ с номинальной электрической мощностью 7,9 МВт (см. табл. 1), сочетает простую надежную конструкцию и новейшие технологии.

    Таблица 1. Характеристики SGT-300 для механического привода и производства энергии

    Производство энергии

    Мехпривод

    7,9 МВт

    8 МВт

    9 МВт

    Мощность в ИСО

    Природный газ/жидкое топливо/двух топливная и другие топлива по запросу;

    Автоматическая смена топлива с главного на резервное, на любой нагрузке

    Уд. расход тепла

    11,773 кДж/кВтч

    10,265 кДж/кВтч

    10,104 кДж/кВтч

    Скорость силовой турбины

    5,750 - 12,075 об/мин

    5,750 - 12,075 об/мин

    Степень сжатия

    Расход выхлопных газов

    Температура выхлопных газов

    542 °C (1,008 °F)

    491 °C (916 °F)

    512 °C (954 °F)

    NO X выбросы

    Газ топливо с системой DLE

    1) Электрическая 2) На валу

    Рис. 1. Конструкция газогенератора SGT-300


    Для промышленной генерации энергии применяется одновальный вариант ГТУ SGT-300 (см. рис. 1). Она идеально подходит для комбинированного производства тепловой и электрической энергии (ТЭС). ГТУ SGT-300 является промышленной ГТУ, изначально спроектированной для генерации и обладает следующими эксплуатационными преимуществами для эксплуатирующих организаций:

    Электрический КПД - 31%, что в среднем выше на 2-3% КПД ГТУ меньшей мощности, благодаря более высокому значению КПД достигается экономический эффект на экономии топливного газа;

    Газогенератор укомплектован низкоэмиссионной сухой камерой сгорания по технологии DLE, что позволяет достичь уровня выбросов NOx и CO, более чем в 2,5 раза ниже установленных нормативными документами;

    ГТУ имеет хорошие динамические характеристики благодаря одновальной конструкции и обеспечивает устойчивую работу генератора при колебаниях нагрузки внешней присоединенной сети;

    Промышленная конструкция ГТУ обеспечивает длительный межремонтный ресурс эксплуатации и является оптимальной с точки зрения организации сервисных работ, которые проводятся на месте эксплуатации;

    Существенное снижение пятна застройки, точно также, как и инвестиционных затрат, включающих приобретение общестанционного механического и электрического оборудования, его монтаж и пусконаладку, при применении решения на базе SGT-300 (рис. 2).

    Рис. 2. Массогабаритные характеристики блока SGT-300


    Общая наработка установленного парка SGT-300 составляет более 6 млн ч, с наработкой лидерного ГТУ 151 тыс. ч. Коэффициент готовности/доступности - 97,3%, коэффициент надежности - 98,2%.

    Компания OPRA (Нидерланды) - ведущий поставщик энергетических систем на основе газовых турбин. OPRA разрабатывает, производит и продает современные газотурбинные двигатели мощностью около 2 МВт. Ключевым направлением деятельности компании является производство электроэнергии для нефтегазовой промышленности.

    Надежный двигатель OPRA OP16 обеспечивает более высокую производительность при меньшей себестоимости и большем сроке службы, чем какая-либо другая турбина этого класса. Двигатель работает на нескольких видах жидкого и газобразного топлива. Существует модификация камеры сгорания с пониженным содержанием загрязняющих веществ в выхлопе. Энергоустановка OPRA OP16 1,5-2,0 МВт будет надежным помощником в суровых условиях эксплуатации.

    Газовые турбины OPRA являются совершенным оборудованием для генерации электроэнергии в автономных электрических и когенерационных системах малой энергетики. Разработка конструкции турбины велась более десяти лет. Результатом стало создание простого, надежного и эффективного газотурбинного двигателя, включая модель с низкими выбросами вредных веществ.

    Отличительной особенностью технологии преобразования химической энергии в электрическую в OP16 является запатентованная система управления подготовкой и подачей топливной смеси COFAR, которая обеспечивает режимы горения с минимальным образованием окислов азота и углерода, а также минимум несгоревших остатков топлива. Оригинальной является также запатентованная геометрия радиальной турбины и в целом консольная конструкция сменяемого картриджа, включающего вал, подшипники, центробежный компрессор и турбину.

    Специалистами компаний «ОПРА» и «МЭС Инжиниринг» разработана концепция создания уникального единого технического комплекса мусоропереработки. Из 55-60 млн т всех ТБО, образующихся в России за год, пятая часть - 11,7 млн т - приходится на столичный регион (3,8 млн т - Московская область, 7,9 млн т - Москва). При этом за МКАД из Москвы вывозится 6,6 млн т бытовых отходов. Таким образом, в Подмосковье оседает более 10 млн т мусора. С 2013 г. в Московской области из 39 мусорных полигонов закрыты 22. Заменить их должны 13 мусоросортировочных комплексов, которые будут введены в 2018-2019 гг., а также четыре мусоросжигательных завода. Такая же ситуация происходит и в большинстве других регионов. Однако, не всегда строительство крупных мусороперерабатывающих заводов является выгодным, поэтому проблема мусоропереработки очень актуальна.

    Разработанная концепция единого технического комплекса объединяет полностью радиальные установки ОПРА, обладающие высокой надежностью и эффективностью, с системой газификации/пиролиза компании «МЭС», которая позволяет обеспечить эффективное превращение различных видов отходов (включая ТБО, нефтешламы, загрязненную землю, биологические и медицинские отходы, отходы деревообработки, шпалы и т.д.) в отличное топливо для выработки тепла и электроэнергии. В результате продолжительного сотрудничества спроектирован и находится в стадии реализации стандартизированный комплекс переработки отходов производительностью 48 т/сут. (рис. 3).

    Рис. 3. Общая планировка стандартного комплекса переработки отходов мощностью 48 т/сут.


    В состав комплекса включается установка газификации МЭС с площадкой хранения отходов, две ГТУ ОПРА суммарной электрической мощностью 3,7 МВт и тепловой мощностью 9 МВт, а также различные вспомогательные и защитные системы.

    Реализация подобного комплекса позволяет на площади 2 га получить возможность для автономного энерго- и теплоснабжения различных производственных и коммунальных объектов, решив при этом вопрос утилизации различных видов бытовых отходов.

    Отличия разработанного комплекса от существующих технологий вытекают из уникального сочетания предлагаемых технологий. Малые (2 т/ч) объемы потребляемых отходов, наряду с малой требуемой площадью участка позволяют размещать данный комплекс непосредственно вблизи от небольших поселений, промышленных предприятий и т.п., значительно сэкономив средства на постоянную перевозку отходов к местам их утилизации. Полная автономность комплекса позволяет развернуть его практически в любой точке. Использование разработанного типового проекта, модульных конструкций и максимальная степень заводской готовности оборудования дает возможность максимально сократить сроки строительства до 1-1,5 лет. Применение новых технологий обеспечивает высочайшую экологичность комплекса. Установка газификации «МЭС» вырабатывает одновременно газовую и жидкую фракции топлива, а за счет двухтопливности ГТУ ОПРА они применяются одновременно, что повышает топливную гибкость и надежность энергоснабжения. Низкая требовательность ГТУ ОПРА к качеству топлива повышает надежность всей системы. Установка МЭС позволяет использовать отходы с влажностью до 85%, следовательно, не требуется сушка отходов, что повышает КПД всего комплекса. Высокая температура выхлопных газов ГТУ ОПРА позволяет обеспечивать надежное теплоснабжение горячей водой или паром (до 11 тонн пара в час при 12 бар). Проект является типовым и масштабируемым, что позволяет обеспечить утилизацию любого количества отходов.

    Проведенные расчеты показывают, что стоимость выработки электроэнергии будет составлять от 0,01 до 0,03 евро за 1 кВтч, что показывает высокую экономическую эффективность проекта. Таким образом, компания «ОПРА» в очередной раз подтвердила свою направленность на расширение линейки применяемого топлива и повышение топливной гибкости, а также ориентацию на максимальное применение «зеленых» технологий в своем развитии.

    Газовой турбиной принято называть непрерывно действующий двигатель. Далее пойдёт речь о том, как устроена газовая турбина, в чем заключается принцип работы агрегата. Особенностью такого двигателя является то, что внутри него энергия продуцируется сжатым или нагретым газом, результатом преобразования которого является механическая работа на валу.

    История создания газовой турбины

    Интересно, что механизмы турбин начали разрабатываться инженерами уже очень давно. Первая примитивная паровая турбина была создана ещё в I веке до н. э.! Конечно же, своего существенног
    о расцвета данный механизм достиг только сейчас. Активно разрабатываться турбины начали в конце XIX века одновременно с развитием и совершенствованием термодинамики, машиностроения и металлургии.

    Менялись принципы механизмов, материалы, сплавы, всё совершенствовалось и вот, на сегодняшний день человечеству известна наиболее совершенная из всех ранее существующих форм газовой турбины, которая разграничивается на различные типы. Есть авиационная газовая турбина, а есть промышленная.

    Газовой турбиной принято называть своеобразный тепловой двигатель, его рабочим частям предопределено только одно задание – вращаться вследствие воздействия струи газа.

    Устроена она таким образом, что главная часть турбины представлена колесом, на которое прикреплены наборы лопаток. , воздействуя на лопатки газовой турбины, заставляет их двигаться и вращать колесо. Колесо в свою очередь жёстко скреплено с валом. Этот тандем имеет специальное название – ротор турбины. Вследствие этого движения, происходящего внутри двигателя газовой турбины, достигается получение механической энергии, которая передаётся на электрогенератор, на гребной винт корабля, на воздушный винт самолёта и другие рабочие механизмы аналогичного принципа действия.

    Активные и реактивные турбины

    Воздействие газовой струи на лопатки турбины может быть двояким. Поэтому турбины разделяются на классы: класс активных и реактивных турбин. Отличаются реактивная и активная газовая турбина принципом устройства.

    Активная турбина

    Активная турбина характеризуется тем, что здесь отмечается большая скорость поступления газа на рабочие лопатки. При помощи изогнутой лопатки, струя газа отклоняется от своей траектории движения. В результате отклонения развивается большая центробежная сила. С помощью этой силы лопатки приводятся в движение. Во время всего описанного пути газа происходит потеря части его энергии. Такая энергия и направлена на движение рабочего колеса и вала.

    Реактивная турбина

    В реактивной турбине всё несколько иначе. Здесь поступление газа к рабочим лопаткам осуществляется на незначительной скорости и под воздействием большого уровня давления. Форма лопаток так же отлична, благодаря чему скорость газа значительно увеличивается. Таким образом, струя газа создаёт своего рода реактивную силу.

    Из описываемого выше механизма следует, что устройство газовой турбины достаточно непростое. Дабы такой агрегат работал бесперебойно и приносил своему владельцу прибыль и выгоду, следует доверить его обслуживание профессионалам. Сервисные профильные компании обеспечивают сервисное обслуживание установок, использующих газовые турбины, поставки комплектующих, всевозможных частей и деталей. DMEnergy — одна из таких компаний (), которые обеспечивают своему клиенту спокойствие и уверенность в том, что он не останется один на один с проблемами, возникающими в ходе эксплуатации газовой турбины.