Что такое суг газ. Что такое сжиженные углеводородные газы

Сжиженный газ. Сжиженные углеводородные газы СУГ = Liquefied petroleum gas (LPG) и ШФЛУ == WSLH (wide spread of light hydrocarbons) = NGL (Natural gas liquids)

Сжиженные углеводородные газы (СУГ) Liquefied petroleum gas (LPG) — смесь сжиженных под давлением лёгких углеводородов с температурой кипенияот −50 до 0 °C. Предназначены для применения в качестве топлива, а также используются в качестве сырья для органического синтеза. Состав может существенно различаться, основные компоненты: пропан, изобутан и н-бутан. Производятся СУГ в процессе ректификации широкой фракции лёгких углеводородов (ШФЛУ = WSLH (wide spread of light hydrocarbons) = NGL (Natural gas liquids). ШФЛУ относится к сжиженным углеводородным газам и представляет собой легкокипящую и легковоспламеняющуюся жидкость, пожаро- и взрывоопасную, 4-го класса токсичности.

Таблица 1. Технические требования к ШФЛУ - это сырье для производства СУГ

Показатели Марка А Марка Б Марка В
Углеводородный состав, % масс. С 1 - С 2 , не более 3 5 не регламентируется
С 3 , не менее 15 не регламентируется не регламентируется
С 4 - С 5 , не менее 45 40 35
с 6 и выше, не более 11 25 30
Плотность при 20 о С, кг/м 3 515 - 525 525 - 535 535 и выше
Содержание сернистых соединений в пересчете на серу, % масс., не более 0,025 0,05 0,05
в том числе сероводорода, % масс., не более 0,003 0,003 0,003
Содержание взвешенной воды Отсутствие
Содержание щелочи Отсутствие
Внешний вид Бесцветная прозрачная жидкость.

Пары ШФЛУ образуют с воздухом взрывоопасные смеси с 1,3 - 9,5 % об. при 98 066 Па (1 ата.) 15 - 20 о С.

Таблица 2. Температуры самовоспламенения компонентов ШФЛУ, о С

Пропан (С 3 Н 8) Изо-бутан (С 4 Н 10) Н-бутан (С 4 Н 10) Изо-пентан (С 5 Н 12) Н-пентан (С 5 Н 12)
466 462 405 427 287

Предельно допустимая концентрация паров ШФЛУ в воздухе рабочей зоны составляет не более 300 мг/м 3 . ШФЛУ попадающее на кожу человека вызывает обморожение напоминающее ожог.

Таблица 3. Классификация СУГ в РФ: Пропан технический, Пропан автомобильный, Пропан-бутан автомобильный, Пропан-бутан технический, Бутан технический:

В зависимости от компонентного состава СУГ подразделяются на следующие марки:

Таблица 4. Свойства Параметры торговых марок: Пропан технический, Пропан автомобильный, Пропан-бутан автомобильный, Пропан-бутан технический, Бутан технический

Наименование показателя Пропан технический Пропан автомобильный Пропан-бутан автомобильный Пропан-бутан технический Бутан технический
1. Массовая доля компонентов
Сумма метана, этана и этилена Не нормируется
Сумма пропана и пропилена не менее 75 % масс. Не нормируется
в том числе пропана не нормируется не менее 85±10 % масс. не менее 50±10 % масс. не нормируется не нормируется
Сумма бутанов и бутиленов не нормируется не нормируется не нормируется не более 60 % масс. не менее 60 % масс.
Сумма непредельных углеводородов не нормируется не более 6 % масс. не более 6 % масс. не нормируется не нормируется
2. Доля жидкого остатка при 20 о С не более 0,7 % об. не более 0,7 % об. не более 1,6 % об. не более 1,6 % об. не более 1,8 % об.
3. Давление насыщенных паров не менее 0,16 МПа

(при минус 20 о С)

не менее 0,07 МПа

(при минус 30 о С)

не более 1,6 МПа

(при плюс 45 о С)

не нормируется не нормируется
4. Массовая доля сероводорода и меркаптановой серы
в том числе сероводорода :
не более 0,013 % масс. не более 0,001 % масс. не более 0,001 % масс. не более 0,013 % масс. не более 0,013 % масс.
не более 0,003 % масс.
5. Содержание свободной воды отсутствие
6. Интенсивность запаха, баллы не менее 3

Сжиженные углеводородные газы пожаро- и взрывоопасны, малотоксичны, имеют специфический характерный запах углеводородов, по степени воздействия на организм относятся к веществам 4-го класса опасности. СУГ в воздухе рабочей зоны (в пересчете на углерод) предельных углеводородов (пропан, бутан) — 300 мг/м 3 , непредельных углеводородов (пропилен, бутилен) — 100 мг/м 3 . СУГ образуют с воздухом при концентрации паров пропана от 2,3 до 9,5 %, нормального бутана от 1,8 до 9,1 % (по объёму), при давлении 0,1 МПа и температуре 15 — 20 о С. Температура самовоспламенения пропана в воздухе составляет 470 о С, нормального бутана — 405 о С.

Таблица 4. Физические характеристики: Метан, Этан, Этилен, Пропан, Пропилен, н-Бутан, Изобутан, н-Бутилен, Изобутилен, н-Пентан

Показатель Метан Этан Этилен Пропан Пропилен н-Бутан Изобутан н-Бутилен Изобутилен н-Пентан
Химическая формула СН 4 С 2 Н 6 С 2 Н 4 С 3 Н 8 С 3 Н 6 С 4 Н 10 С 4 Н 10 С 4 Н 8 С 4 Н 8 С 5 Н 12
Молекулярная масса, кг/кмоль 16,043 30,068 28,054 44,097 42,081 58,124 58,124 56,108 56,104 72,146
Молекулярный объем, м 3 /кмоль 22,38 22,174 22,263 21,997 21,974 21,50 21,743 22,442 22,442 20,87
Плотность газовой фазы, кг/м 3 , при 0 о С 0,7168 1,356 1,260 2,0037 1,9149 2,7023 2,685 2,55 2,5022 3,457
Плотность газовой фазы, кг/м 3 , при 20 о 0,668 1,263 1,174 1,872 1,784 2,519 2,486 2,329 2,329 3,221
Плотность жидкой фазы, кг/м 3 , при 0 о 416 546 566 528 609 601 582 646 646 6455
Температура кипения, при 101,3 кПа минус 161 минус 88,6 минус 104 минус 42,1 минус 47,7 минус 0,5 минус 11,73 минус 6,9 3,72 36,07
Низшая теплота сгорания, МДж/м 3 35,76 63,65 59,53 91,14 86,49 118,53 118,23 113,83 113,83 146,18
Высшая теплота сгорания, МДж/м 3 40,16 69,69 63,04 99,17 91,95 128,5 128,28 121,4 121,4 158
Температура воспламенения, о С 545-800 530-694 510-543 504-588 455-550 430-569 490-570 440-500 400-440 284-510
Октановое число 110 125 100 125 115 91,20 99,35 80,30 87,50 64,45
Теоретически необходимое количество воздуха

для горения, м 3 /м 3

3,52 16,66 14,28 23,8 22,42 30,94 30,94 28,56 28,56 38,08

Таблица 5. Критические параметры (температура и давление) газов: Метан, Этан, Этилен, Пропан, Пропилен, н-Бутан, Изобутан, н-Бутилен, Изобутилен, н-Пентан

Газы могут быть превращены в жидкое состояние при сжатии, если температура при этом не превышает определенного значения, характерного для каждого однородного газа. Температура при которой данный газ не может быть сжижен никаким повышением давления, называется критической температурой. Давление, необходимое для сжижения газа при этой критической температуре, называется критическим давлением.

Показатель Метан Этан Этилен Пропан Пропилен н-Бутан Изобутан н-Бутилен Изобутилен н-Пентан
Критическая температура, о С минус 82,5 32,3 9,9 96,84 91,94 152,01 134,98 144,4 155 196,6
Критическое давление, МПа 4,58 4,82 5,033 4,21 4,54 3,747 3,6 3,945 4,10 3,331

Таблица 6. Упругость насыщенных паров МПа, Метан, Этан, Этилен, Пропан, Пропилен, н-Бутан, Изобутан, н-Бутилен, Изобутилен, н-Пентан

Упругостью насыщенных паров сжиженных газов называется давление, при котором жидкость находится в равновесном состоянии со своей газовой фазой. При такой двухфазной системе не происходит ни конденсации паров ни испарения жидкости. Каждому компоненту СУГ при определенной температуре соответствует определенная упругость паров, возрастающая с ростом температуры.

Температура, о С Этан Пропан Изобутан н-Бутан н-Пентан Этилен Пропилен н-Бутилен Изобутилен
минус 50 0,553 0,07 1,047 0,100 0,070 0,073
минус 45 0,655 0,088 1,228 0,123 0,086 0,089
минус 40 0,771 0,109 1,432 0,150 0,105 0,108
минус 35 0,902 0,134 1,660 0,181 0,127 0,130
минус 30 1,050 0,164 1,912 0,216 0,152 0,155
минус 25 1,215 0,197 2,192 0,259 0,182 0,184
минус 20 1,400 0,236 2,498 0,308 0,215 0,217
минус 15 1,604 0,285 0,088 0,056 2,833 0,362 0,252 0,255
минус 10 1,831 0,338 0,107 0,0680 3,199 0,423 0,295 0,297
минус 5 2,081 0,399 0,128 0,084 3,596 0,497 0,343 0,345
0 2,355 0,466 0,153 0,102 0,024 4,025 0,575 0,396 0,399
плюс 5 2,555 0,543 0,182 0,123 0,030 4,488 0,665 0,456 0,458
плюс 10 2,982 0,629 0,215 0,146 0,037 5,000 0,764 0,522 0,524
плюс 15 3,336 0,725 0,252 0,174 0,046 0,874 0,594 0,598
плюс 20 3,721 0,833 0,294 0,205 0,058 1,020 0,688 0,613
плюс 25 4,137 0,951 0,341 0,240 0,067 1,132 0,694 0,678
плюс 30 4,460 1,080 0,394 0,280 0,081 1,280 0,856 0,864
плюс 35 4,889 1,226 0,452 0,324 0,096 1,444 0,960 0,969
плюс 40 1,382 0,513 0,374 0,114 1,623 1,072 1,084
плюс 45 1,552 0,590 0,429 0,134 1,817 1,193 1,206
плюс 50 1,740 0,670 0,490 0,157 2,028 1,323 1,344
плюс 55 1,943 0,759 0,557 0,183 2,257 1,464 1,489
плюс 60 2,162 0,853 0,631 0,212 2,505 1,588 1,645

Таблица 6. Зависимость плотности от температуры: Пропан, Изобутан, н-Бутан

Температура, о С Пропан Изобутан н-Бутан
Удельный объём Плотность Удельный объём Плотность Удельный объём Плотность
Жидкость, л/кг Пар, м 3 /кг Жидкость, кг/л Пар, кг/м 3 Жидкость, л/кг Пар, м 3 /кг Жидкость, кг/л Пар, кг/м 3 Жидкость, л/кг Пар, м 3 /кг Жидкость, кг/л Пар, кг/м 3
минус 60 1,650 0,901 0,606 1,11
минус 55 1,672 0,735 0,598 1,36
минус 50 1,686 0,552 0,593 1,810
минус 45 1,704 0,483 0,587 2,07
минус 40 1,721 0,383 0,581 2,610
минус 35 1,739 0,308 0,575 3,250
минус 30 1,770 0,258 0,565 3,870 1,616 0,671 0,619 1,490
минус 25 1,789 0,216 0,559 4,620 1,639 0,606 0,610 1,650
минус 20 1,808 0,1825 0,553 5,480 1,650 0,510 0,606 1,960
минус 15 1,825 0,156 0,548 6,400 1,667 0,400 0,600 2,500 1,626 0,624 0,615 1,602
минус 10 1,845 0,132 0,542 7,570 1,684 0,329 0,594 3,040 1,635 0,514 0,612 1,947
минус 5 1,869 0,110 0,535 9,050 1,701 0,279 0,588 3,590 1,653 0,476 0,605 2,100
0 1,894 0,097 0,528 10,340 1,718 0,232 0,582 4,310 1,664 0,355 0,601 2,820
плюс 5 1,919 0,084 0,521 11,900 1,742 0,197 0,574 5,070 1,678 0,299 0,596 3,350
плюс 10 1,946 0,074 0,514 13,600 1,756 0,169 0,5694 5,920 1,694 0,254 0,5902 3,94
плюс 15 1,972 0,064 0,507 15,51 1,770 0,144 0,565 6,950 1,715 0,215 0,583 4,650
плюс 20 2,004 0,056 0,499 17,740 1,794 0,126 0,5573 7,940 1,727 0,186 0,5709 5,390
плюс 25 2,041 0,0496 0,490 20,150 1,815 0,109 0,5511 9,210 1,745 0,162 0,5732 6,180
плюс 30 2,070 0,0439 0,483 22,800 1,836 0,087 0,5448 11,50 1,763 0,139 0,5673 7,190
плюс 35 2,110 0,0395 0,474 25,30 1,852 0,077 0,540 13,00 1,779 0,122 0,562 8,170
плюс 40 2,155 0,035 0,464 28,60 1,873 0,068 0,534 14,700 1,801 0,107 0,5552 9,334
плюс 45 2,217 0,029 0,451 34,50 1,898 0,060 0,527 16,800 1,821 0,0946 0,549 10,571
плюс 50 2,242 0,027 0,446 36,800 1,9298 0,053 0,5182 18,940 1,843 0,0826 0,5426 12,10
плюс 55 2,288 0,0249 0,437 40,220 1,949 0,049 0,513 20,560 1,866 0,0808 0,536 12,380
плюс 60 2,304 0,0224 0,434 44,60 1,980 0,041 0,505 24,200 1,880 0,0643 0,532 15,400

Наиболее распространенным является использование СУГ в качестве топлива в двигателях внутреннего сгорания. Обычно для этого используется смесь пропан-бутан. В некоторых странах СУГ использовались с 1940 года как альтернативное топливо для двигателей с искровым зажиганием. СУГ являются третьим наиболее широко используемым моторным топливом в мире. В 2008 более 13 миллионов автомобилей по всему миру работали на пропане. Более 20 млн тонн СУГ используются ежегодно в качестве моторного топлива.

Использование СУГ в качестве топлива в промышленных и коммунально-бытовых нагревательных аппаратах позволяет осуществлять регулирование процесса горения в широком диапазоне, а возможность хранения СУГ в резервуарах делает его более предпочтительным по сравнению с природным газом в случае использования СУГ на автономных узлах теплоснабжения.

Таблица 7. Использование СУГ для производства продуктов для органического синтеза

Основное направление химической переработки СУГ — это термические и термокаталитические превращения. В первую очередь здесь подразумеваются процессы пиролиза и дегидрирования, приводящие к образованию ненасыщенных углеводородов — ацетилена, олефинов, диенов, которые широко применяются для производства высокомолекулярных соединений и кислородсодержащих продуктов. Это направление включает в себя также процесс производства сажи термическим разложением в газовой фазе, а также процесс производства ароматических углеводородов. Схема превращений углеводородных газов в конечные продукты представлена в таблице.

Продукты прямого превращения

углеводородных газов

Производное вещество Конечный продукт
первичное вторичное
Этилен Полиэтилен Полиэтиленовые пластмассы
Окись этилена Поверхностно-активные вещества
Этиленгликоль Полиэфирное волокно, антифриз и смолы
Этаноламины Промышленные растворители, моющие вещества, мыло
Хлорвинил Хлорполивинил Пластиковые трубы, пленки
Этанол Этиловый эфир, уксусная кислота Растворители, химические преобразователи
Ацетальдегид Уксусный ангидрид Ацетатная целлюлоза, аспирин
Нормальный бутан
Винилцетат Поливиниловый спирт Пластификаторы
Поливинилацетат Пластиковые пленки
Этилбензол Стирол Полистироловые пластмассы
Акриловая кислота Волокна, пластмассы
Пропиональдегид Пропанол Гербициды
Пропионовая кислота Консервирующие средства для зерна
Пропилен Акрилонитрил Адипонитрил Волокна (нейлон-66)
Полипропилен Пластичные пленки, волокна
Окись пропилена Пропиленкарбонат Полиуретановые пены
Полипропиленгликоль Специальные растворители
Аллиловый спирт Полиэфирные смолы
Изопропанол Изопропилацетат Растворители типографических красок
Ацетон Растворитель
Изопропилбензол Фенол Фенольные смолы
Акролеин Акрилаты Латексные покрытия
Аллилхлориды Глицероль Смазочные вещества
Нормальные и изомолярные альдегиды Нормальный бутанол Растворитель
Изобутанол Амидные смолы
Изопропилбензол
Номальные бутены Полибутены Смолы
Вторичный бутиловый спирт Метилэтиловый кетон Промышленные растворители, покрытия, связывающие вещества
Депарафинизирующие добавки к нефти
Изобутилен Изобутиленметиловый бутадиеновый сополимер
Бутиловая смола Пластмассовые трубы, герметики
Третичный бутиловый спирт Растворители, смолы
Метилбутиловый третичный эфир Повыситель октанового числа бензина
Метакролеин Метилметакрилат Чистые пластиковые листы
Бутадиен Стирилбутадиеновые полимеры Буна-каучуковая синтетическая резина
Адипонитрил Гексаметилендиамин Нейлон
Сульфолен Сульфолан Очиститель промышленного газа
Хлоропрен Синтетическая резина
Бензол Этилбензол Стирол Полистироловые пластмассы
Изопропилбензол Фенол Фенольные смолы
Нитробензол Анилин
Линейный алкилбензол Разлагающиеся под действием бактерий моющие вещества
Малеиновый ангидрид Модификаторы пластмасс
Циклогексан Капролактам Нейлон-6
Адипиновая кислота Нейлон-66
Толуол Бензол Этилбензол, стирол Полистироловые пластмассы
Изопропилбензол, фенол Фенольные смолы
Нитробензол, хлорбензол, анилин, фенол Красители, резина, фотохимикаты

Кроме перечисленного СУГ используют в качестве аэрозольного энергоносителя. Аэрозолем является смесь активного компонента (духов, воды, эмульгатора) с пропиленом. Это коллоидный раствор, в котором тонкодиспергированные (размером 10 — 15 мкм) жидкие или твердые вещества взвешены в газовой или жидкой, легкоиспаряющейся фазе сжиженного углеводородного газа. Дисперсная фаза — активный компонент, из-за которого и вводят пропеллент в аэрозольные системы, применяющиеся для распыления духов, туалетной воды, полирующих веществ и др.

Газы углеводородные сжиженные - пропан-бутан, в дальнейшем СУГ - смеси углеводородов, которые при нормальных условиях находятся в газообразном состоянии, а при небольшом повышении давления и постоянной температуре или незначительном понижении температуры и атмосферном давлении переходят из газообразного состояния в жидкое.

СУГ представляет собой пропан-бутановую смесь. В состав сжиженного газа входят в небольших количествах также: пропилен, бутилен, этан, этилен, метан и жидкий неиспаряющийся остаток - пентан, гексан.

Сырьем для получения СУГ являются в основном нефтяные попутные газы, газоконденсатных месторождений и газы, получаемые в процессе переработки нефти.

С заводов СУГ в железнодорожных цистернах поступает на газонаполнительные станции (ГНС) газовых хозяйств, где хранится в специальных резервуарах до отпуска потребителям. Потребителям СУГ доставляется в баллонах или автоцистернами -

Сжиженные углеводородные газы применяются в качестве автомобильного топлива.

За сравнительно короткий промежуток времени пройден достаточно трудный путь по организации учета сжиженных газов, ясного понимания процессов, происходящих при перекачке, измерении, хранении, транспортировке.

Общеизвестно, что добыча и использование нефти и газа в России имеет многовековую историю. Однако технический уровень промыслового газового хозяйства до XX века был исключительно примитивным. Не находя экономически обоснованных областей применения, нефтепромышленники не только не заботились о сохранении газа или легких фракций углеводородов, но и старались от них избавиться. Негативное отношение наблюдалось и к бензиновым фракциям нефти, поскольку они вызывали повышение температуры вспышки и опасность загорания и взрывов. Выделение газовой промышленности в 1946 г. в самостоятельную отрасль позволило революционно изменить ситуацию и резко увеличить как объём добычи газа в абсолютном значении, так и его удельный вес в топливном балансе страны. Быстрые темпы роста добычи газа стали возможны благодаря коренному усилению работ по строительству магистральных газопроводов, соединивших основные газодобывающие районы с потребителями газа крупными промышленными центрами и химическими заводами.

Тем не менее, основательный подход к точному измерению и учету сжиженных газов в нашей стране стал появляться не более 10 - 15 лет назад. Для сравнения, сжиженный газ в Англии производится с начала 30-х годов XX века, с учетом того, что это страна с развитой рыночной экономикой, технология измерения и учета сжиженных газов, а также производство специального оборудования для этих целей стали развиваться практически с началом производства.

Итак, коротко рассмотрим, что представляют собой сжиженные углеводородные газы и как они производятся. Сжиженные газы делятся на две группы:

Сжиженные углеводородные газы (СУГ) - представляют собой смесь химических соединений, состоящую в основном из водорода и углерода с различной структурой молекул, т.е. смесь углеводородов различной молекулярной массы и различного строения. Основными компонентами СУГ являются пропан и бутан, в виде примесей в них содержатся более легкие углеводороды (метан и этан) и более тяжелые (пентан). Все перечисленные компоненты являются предельными углеводородами. В состав СУГ могут входить также непредельные углеводороды: этилен, пропилен, бутилен. Бутан-бутилены могут присутствовать в виде изомерных соединений (изобутана и изобутилена).

ШФЛУ - широкая фракция легких углеводородов, включает в основном смесь легких углеводородов этановой (С2) и гексановой (С6) фракций.

В целом типичный состав ШФЛУ выглядит следующим образом: этан от 2 до 5%; сжиженный газ фракций С4-С5 40-85%; гексановая фракция С6 от 15 до 30%, на пентановую фракцию приходится остаток.

Учитывая широкое применение в газовом хозяйстве именно СУГ, следует более подробно остановиться на свойствах пропана и бутана.

Пропан — это органическое вещество класса алканов. Содержится в природном газе, образуется при крекинге нефтепродуктов. Химическая формула C 3 H 8 (рис. 1). Бесцветный газ без запаха, очень малорастворим в воде. Точка кипения -42,1С. Образует с воздухом взрывоопасные смеси при концентрации паров от 2,1 до 9,5%. Температура самовоспламенения пропана в воздухе при давлении 0,1 МПа (760 мм рт. ст.) составляет 466 °С.

Пропан используется в качестве топлива, основной компонент так называемых сжиженных углеводородных газов, в производстве мономеров для синтеза полипропилена. Является исходным сырьём для производства растворителей. В пищевой промышленности пропан зарегистрирован в качестве пищевой добавки E944, как пропеллент.

Бутан (C 4 H 10) — органическое соединение класса алканов. В химии название используется в основном для обозначения н-бутана. Химическая формула C 4 H 10 . Такое же название имеет смесь н-бутана и его изомера изобутана СН(СНз)з. Бесцветный горючий газ, без запаха, легко сжижаемый (ниже 0 °С и нормальном давлении или при повышенном давлении и обычной температуре — легколетучая жидкость). Содержится в газовом конденсате и нефтяном газе (до 12 %). Является продуктом каталитического и гидрокаталитического крекинга нефтяных фракций.

Производство, как сжиженного газа, так и ШФЛУ осуществляется за счет следующих трех основных источников:

  • предприятия нефтедобычи - получение СУГ и ШФЛУ происходит во время добычи сырой нефти при переработке попутного (связанного) газа и стабилизации сырой нефти;
  • предприятия газодобычи - получение СУГ и ШФЛУ происходит при первичной переработке скважинного газа или несвязанного газа и стабилизации конденсата;
  • нефтеперегонные установки - получение сжиженного газа и аналогичных ШФЛУ происходит при переработке сырой нефти на НПЗ. В данной категории ШФЛУ состоит из смеси бутан-гексановых фракций (С4-С6) с небольшим количеством этана и пропана.

Основное преимущество СУГ - возможность их существования при температуре окружающей среды и умеренных давлениях, как в жидком, так и в газообразном состоянии. В жидком состоянии они легко перерабатываются, хранятся и транспортируются, в газообразном имеют лучшую характеристику сгорания.

Состояние углеводородных систем определяется совокупностью влияний различных факторов, поэтому для полной характеристики необходимо знать все параметры. К основным параметрам, поддающимся непосредственному измерению и влияющим на режимы течения СУГ, относятся давление, температура, плотность, вязкость, концентрация компонентов, соотношение фаз.

Система находится в равновесном состоянии, если все параметры остаются неизменными. При таком состоянии в системе не происходит видимых качественных и количественных изменений. Изменение хотя бы одного параметра нарушает равновесное состояние системы, вызывая тот или иной процесс.

Углеводородные системы могут быть гомогенными и гетерогенными. Если система имеет однородные физические и химические свойства - она гомогенна, если же она неоднородна или состоит из веществ, находящихся в разных агрегатных состояниях - она гетерогенна. Двухфазные системы относятся к гетерогенным.

Под фазой понимается определенная гомогенная часть системы, имеющая четкую границу раздела с другими фазами.

Сжиженные газы при хранении и транспортировании постоянно изменяют свое агрегатное состояние, часть газа испаряется и переходит в газообразное состояние, а часть конденсируется, переходя в жидкое состояние. В тех случаях, когда количество испарившейся жидкости равно количеству сконденсировавшегося пара, система жидкость-газ достигает равновесия и пары на жидкостью становятся насыщенными, а их давление называется давлением насыщения или упругостью паров.

Упругость паров СУГ возрастает с повышением температуры и уменьшается с ее понижением.

Сжиженные углеводородные газы транспортируются в железнодорожных и автомобильных цистернах, хранятся в резервуарах различного объема в состоянии насыщения: в нижней части сосудов размещается кипящая жидкость, а в верхней находятся сухие насыщенные пары. При снижении температуры в резервуарах часть паров сконденсируется, т. е. увеличивается масса жидкости и уменьшается масса пара, наступает новое равновесное состояние. При повышении температуры происходит обратный процесс, пока при новой температуре не наступит равновесие фаз. Таким образом, в резервуарах и трубопроводах происходят процессы испарения и конденсации, которые в двухфазных средах протекают при постоянном давлении и температуре, при этом температуры испарения и конденсации равны.

В реальных условиях в сжиженных газах в том или ином количестве присутствуют водяные пары. Причем их количество в газах может увеличиваться до насыщения, после чего влага из газов выпадает в виде воды и смешивается с жидкими углеводородами до предельной степени растворимости, а затем выделяется свободная вода, которая отстаивается в резервуарах. Количество воды в СУГ зависит от их углеводородного состава, термодинамического состояния и температуры. Доказано, что если температуру СУГ снизить на 15-30 0 С, то растворимость воды снизится в 1,5-2 раза и свободная вода скопится на дне резервуара или выпадет в виде конденсата в трубопроводах. Скопившуюся в резервуарах воду необходимо периодически удалять, иначе она может попасть к потребителю или привести к поломке оборудования.

Согласно методам испытаний СУГ определяют наличие лишь свободной воды, присутствие растворенной допускается.

За рубежом предъявляются более жесткие требования на наличие воды в СУГ и ее количество, посредством фильтрации доводится до 0,001% по массе. Это оправдано, так как растворенная вода в сжиженных газах является загрязнителем, ибо даже при положительных температурах она образует твердые соединения в виде гидратов.

Гидраты можно отнести к химическим соединениям, так как они имеют строго определенный состав, но это соединения молекулярного типа, однако химическая связь на базе электронов у гидратов отсутствует. В зависимости от молекулярной характеристики и структурной формы внутренних ячеек, различные газы внешне представляют собой четко выраженные прозрачные кристаллы разнообразной формы, а гидраты, полученные в турбулентном потоке - аморфную массу в виде плотно спрессованного снега.

В большинстве случаев, говоря о сжиженных газах, подразумеваются углеводороды соответствующие ГОСТ 20448-90 «Газы углеводородные сжиженные для коммунально-бытового потребления» и ГОСТ 27578-87 «Газы углеводородные сжиженные для автомобильного транспорта». Они представляют собой смесь, состоящую в основном из пропана, бутана и изобутана. Благодаря идентичности строения их молекул приближенно соблюдается правило аддитивности: параметры смеси пропорциональны концентрациям и параметрам отдельных компонентов. Поэтому по некоторым параметрам можно судить о составе газов.

Сжиженные углеводородные газы относятся к низкокипящим жидкостям, способным находиться в жидком состоянии под давлением насыщенных паров.

  1. Температура кипения:Пропан -42 0 С; Бутан - 0,5 0 С.
  2. При нормальных условиях объем газообразного пропана больше в 270 раз, чем объем пропана сжиженного.
  3. Сжиженные углеводородные газы характеризуются высоким коэффициентом теплового расширения.
  4. СУГ характеризуются низкой плотностью и вязкостью по сравнению со светлыми нефтепродуктами.
  5. Нестабильность агрегатного состояния СУГ при течении по трубопроводам в зависимости от температуры, гидравлических сопротивлений, неравномерности условных проходов.
  6. Транспортирование, хранение и измерение СУГ возможны только посредством закрытых (герметизированных) систем, рассчитанных, как правило, на рабочее давление 1,6 МПа. ГОСТ Р 55085-2012
  7. Перекачивающие, измерительные операции требуют применения специального оборудования, материалов и технологий.

Во всем мире, углеводородные системы и оборудование, а также устройство технологических систем подчинено единым требованиям и правилам.

Сжиженный газ представляет собой ньютоновскую жидкость, поэтому процессы перекачивания и измерения описываются общими законами гидродинамики. Но функция углеводородных систем сводится не только к простому перемещению жидкости и ее измерению, но и обеспечению уменьшения влияния «отрицательных» физико-химических свойств СУГ.

Принципиально, системы, перекачивающие СУГ, мало отличаются от систем для воды и нефтепродуктов, и, тем не менее, необходимо дополнительное оборудование, гарантирующее качественные и количественные характеристики измерения.

Исходя из этого технологическая углеводородная система, как минимум должна иметь в своем составе резервуар, насос, газоотделитель, измеритель, дифференциальный клапан, отсечной или регулирующий клапан, устройства безопасности от превышения давления или скорости потока.

Резервуар хранения должен быть оборудован входным патрубком для налива продукта, линией слива для отпуска и линией паровой фазы, которая используется для выравнивания давления, возврата паров от газоотделителя или калибровки системы.

Насос - обеспечивает давление, необходимое для движения продукта через систему отпуска. Насос должен быть подобран по емкости, производительности и давлению.

Измеритель - включает преобразователь количества продукта и отсчетное устройство (индикацию) которое может быть электронным или механическим.

Газоотделитель - отделяет пар, образованный во время потока жидкости, прежде чем он достигнет счетчика и возвращает его в паровое пространство резервуара.

Дифференциальный клапан - служит для обеспечения прохождения через счетчик только жидкого продукта, посредством создания после счетчика избыточного дифференциального давления, заведомо большего, чем давление паров в емкости.

Углеводородные газы

. Состав сжиженных углеводородных газов

Под СУГ понимают такие индивидуальные углеводороды или их смеси, которые при норм. условиях находятся в газообразном состоянии, а при относительно небольшом повышении давления без изменения температуры или незначительном понижении температуры при атмосферном давлении переходит в жидкое состояние.

При нормальных условиях из предельных углеводородов (C n H 2 n +2) газами являются лишь метан, этан, пропан, и бутан. При О 0 С этан конденсируется в жидкость при повышении давления до 3 Мпа. Пропан до 0,47 Мпа, Н-бутан до 0,116 МПа, Изобутан до 0,16 МПа. Рассмотрим, какие углеводороды переходят в жидкое состояние при сравнительно небольшом понижении температуры и атмосферном давлении 4подходящей для практического применения являются пропан и бутан. На ряду с нормальными предельными углеводородами существуют изомерные соединения, отличающиеся характером расположения атомов углерода, а также некоторыми свойствами. Изомер бутана - изобутан.

Структура и ф-ла Н-бутана

СН 3 -СН 2 -СН 2 - СН 3

Изобутан:

Помимо предельных в состав СУГ встречаются также группа ненасыщ. Или непредельных углеводородов, характеризуются двойной или тройной связью между атомами углерода. Это этилен, пропилен, бутилен (нормальный и изомерный). Общая формула непредельных углеводородов с двойной связью С n Н 2 n . Этилен С2Н4 СН2=СН2. Для получения сжиженных углеводородных газов используется жирные природные газы, т.е. газы из нефтяных и конденсатных месторождений, содержащих большое количество тяжелых углеводородов. На газоперерабатывающих заводах их этих газов выделяются пропан-бутановую фракцию и газовый бензин(С5Н12). Технический пропан и бутан а также их смеси представляют собой сжиженный газ, используемый для газоснабжения потребителей.

Технические газы отличаются от чистых содержанием небольших количеств углеводорода и наличием примеси. Для технического пропана содержание С3Н8+С3Н6 (пропилен) д.б. не <93%. Содержание С2Н6 +С2Н4 (этилен) не > 4%. Содержание С4Н10+С4Н8 не >3%.

Для технического бутана: С4Н10+С4Н8 д.б. не <93%. С3Н8 +С3Н6 не> 4%. С5Н12+С5Н10 не >3%.

Для смеси тех. бутана и пропана содержание: С3Н8+С3Н6, С4Н10+С4Н8 д.б. не < 93%. С2Н6 +С2Н4 не> 4%. С5Н12+С5Н10 не >3%.

2. Технические сжиженные газы. Марки СУГ

Состав сжиженных газов, применяемых в газоснабжении выбираются с учетом климатических условий, где он используется. И определяется требованиями ГОСТ 20448 «Газы углеводородные сжиженные топливные для коммунально-бытового потребления. Технические условия». Состав подбирается так, чтобы при низких температурах зимой упругость паров смеси была достаточной для нормальной работы регуляторов. А при высоких температурах летом не превышала мах давления, на которые рассчитаны баллоны и резервуары для СУГ. Согласно ГОСТ давление насыщенных паров смеси д.б. не менее 0,16 МПа при t=+45 0 C. Если сжиженный пропан может применяться при температурах от -35 до +45, то бутан в условиях с естественным испарением не м.б. использован при темературах ниже 0, хотя при t >0 он имеет значительное преимущество перед пропаном. Поэтому подбором состава сжиженного газа можно получать желаемые свойства.

ГОСТ на СУГ устанавливают 3 марки сжиженного газа:

1) Смесь пропана и бутана технических зимняя СПБТЗ

2) Смесь пропана и бутана технических летняя СПБТЛ

) Бутан технический

Деление смеси пропана и бутана на зимнюю и летнюю марки связано с наружными t-ми, определяющими упругость нас. паров сжиженных газов, находящихся в баллонах или подземных резервуарах.

Зимой в составе смеси д.б. больше пропана и пропилена, летом количество их м.б. уменьшено. С той же целью лимитируются мах содержание бутана и бутилена в смеси, т.к. при низких температурах они имеют малую упругость паров.

С учетом оптимальной упругости насыщенных паров ГОСТ предусматривает содержание пропана и пропилена в зимней марке не <75% по массе. А в летней марке и бутане техническим содержанием этих компонентов не нормируется. Сумма бутанов и бутиленов в зимней марке не нормируется, в летней не >60%, в бутане техническом не <60% по массе. Ограничение в составе сжиженных газов содержания лёгких компонентов (этан, этилен) связано с тем, что наличие значительного количества этих углеводородов приводит к резкому увеличению упругости паров. Например, при 35 0 C упругость насыщенных паров этана достигает 4,9 МПа. В то же время наличие незначительного количества легких компонентов в сжиженном газе повышает общее давление насыщенных паров смеси, что обеспечивает в зимнее время нормальное газоснабжение потребителей.

Наличие значительного количества пентана также недопустимо, т.к. это приводит к резкому снижению давления насыщенных паров и повышению точки росы (t-ра конденсации пентана около 3 0 C).

3. Свойство СУГ

Возможны 3 состояния сжиженного газа, в котором находятся при хранении и использовании:

1) В виде жидкости (жидкая фаза)

2) Пар (паровая фаза), т.е. насыщенные пары, находящиеся совместно с жидкостью в резервуаре или баллоне.

) Газа (когда давление в паровой фазе ниже давления насыщенных паров при данной температуре).

Свойства сжиженных газов легко переходят из одного состояния в другое, делает их особенно ценным источником газоснабжения, т.к. транспортировать и хранить их можно в жидком виде, а сжигать в виде газа. Т.о. при транспортировке и хранении используется преимущественно жидкие фазы, а при сжигании газообразные.

Упругость насыщенных паров газа - это важнейший параметр, по которому определяется рабочее давление в баллонах и резервуарах. Давление и температура сжиженных газов строго соответствует друг другу.

Упругость насыщенных паров СУГ изменяется пропорционально температуре жидкой фазы и является величиной строго определенной для данной температуры.

Во все уравнения, связывающие физические параметры газообразного или жидкого вещества входят абсолютное давление и температура. А в уравнения для технических расчетов прочности стенок баллонов, резервуаров - избыточное давление.

В газообразный составе СУГ тяжелее воздуха в 1,5-2,1 раза. В жидком состоянии они почти в 2 раза легче воды.

Скрытая теплота парообразование весьма незначительная (приблизительно 116кВт/кг), поэтому расход теплоты на испарение сжиженного газа составляет 0,7% от потенциально содержащейся в них тепловой энергии. Вязкость очень мала, что обеспечивает транспортировку СУГ по трубопроводом, но то же время благоприятствует утечкам. Для них характерны низкие пределы воспламенения воздуха (2,3% для пропана, 1,7% для бутана).

Разница между верхним и нижним пределами незначительна, поэтому при их сжимании допускается применение отношения воздух-сжиженный газ. Обладает невысокими t-ми воспламенения по сравнению с большинством горючих газов (510 0 C для пропана и 490 0 C для бутана). Возможно образование конденсата при снижении t до точки росы или при повышении давления. Сжиженные газы характеризуются низкой t-рой кипения и поэтому при испарении во время внезапного выхода из трубопровода или резервуара в атмосферу охлаждается до отрицательной t-ры. Жидкая фаза попадая на незащищенную кожу человека может привести к обморожению. По характеру воздействия оно напоминает ожог.

В отличии от большинства жидкостей, которые при изменении t-ры незначительно изменяют свой объём, жидкая фаза СУГ довольно резко увеличивает свой объем при повышении t-ры (в 16 раз больше чем вода).

Сжимаемость сжиженных газов по сравнению с другими жидкостями весьма значительна. Если сжимаемость воды принять за единицу, то сжимаемость нефти 1,56, а пропана 15. Если жидкая фаза занимает весь объем резервуара, то при повышении t-ры ей расширяться некуда, и она начинает сжиматься. Давление в резервуаре повышается. Повышение давления д.б. не больше допустимого расчетного, иначе возможна авария. Поэтому при заполнении резервуаров и баллонов предусматривается оставлять паровую подушку, т.е. заполнять их не полностью. Величина паровой подушки для подземных резервуаров составляет 10%, для подземных и баллонов 15%.

Сжиженные газы имеют более высокую, чем природные газы, объемную теплоту сгорания (приближенно в 3 раза выше).

Сжиженные газы нетоксичны, но низкие пределы воспламенения и медленная диффузия в атмосферу в сочетании отсутствия у них запаха, цвета и вкуса (как в жидком, так и в газообразном виде) диктует необходимость их одоризации.

4. Достоинства и недостатки СУГ

Как топливо сжиженные газы обладают всеми достоинствами природных газов. Кроме того для них можно отметить дополнительно:

Возможность создать у потребителя необходимый запас газа в жидком виде.

2. Простота транспортировки

Выделение наибольшего количества теплоты при сжигании

Отсутствие в составе СУГ коррозионно-активных веществ

Доступность использования в любом виде и в любых условиях

Недостатки СУГ:

Переменность состава и теплоты сгорания при естественном испарении

2. Малые значения низшей границы предела воспламенения

Плотность пропана и бутана больше плотности воздуха, что при утечках вызывает скопление СУГ в низких местах и создаются взрывоопасные ситуации

Низкая температура воспламенения

Возможность обморожения обслуживающего персонала при аварийных ситуациях

Большой коэффициент объёмного расширения

5. Диаграммы состояния сжиженных газов

Для расчёта процессов и оборудования необходимо знать взаимосвязь различных параметров СУГ с достаточной точностью. Это можно сделать по диаграммам состояния. По ним можно определить:

Упругость паров при данной температуре

2. Давление перегретых паров при данных условиях

Удельный объём и плотность жидкой, паровой и газовой фазы; их энтальпию

Степень сухости и влажности паров

Теплоту парообразования

Работу сжатия компрессором и повышения температуры при сжатии

Эффект охлаждения жидкости и газа при снижении давления (дросселировании)

Скорость истечения газа из сопел газогорелочных устройств

Диаграмма состояния строится на сетке из горизонтальных линий постоянных абсолютных давлений и вертикальных линий постоянных энтальпий. На сетку диаграммы наносят следующие точки и линии.


) Точка «К» критического состояния данного углеводорода по критическим давлению и температуре.

2) Пограничная кривая ПКЖ, проходящая через точку критического состояния и делящая диаграмму на 3 зоны:

I. Характеризует жидкую фазу

II. Парожидкостная фаза. Газовая фаза

Ветвь ЖК характеризует состояние насыщение жидкости при различных давлениях, а ветвь КП состояние насыщенного пара при этих давлениях.

4) Линии постоянной температуры изображаются ломаной ТЕМЛ с горизонтальным участком ЕМ (постоянное давление и температура при кипении жидкой фазы). Изотермы температур выше критической точки данного углеводорода изображается кривыми T’E’

) Линии постоянных удельных объёмов (изохоры)

ОБ - в области жидкой фазы

О’Б’ - в области парожидкостной фазы

Б’Б’’ - в области газовой фазы

Эти же линии соответствуют постоянной плотности

Точка О на пограничной кривой ЖК показывает удельный объём жидкой фазы.

Точка Б’ на КП - паровой фазы, находящейся в резервуарах или баллонах в эксплуатационных условиях

) Линии постоянной энтропии AD, A’D’ (адиабаты). Они используются при определении параметров углеводородов при сжатии их в компрессоре и при истечении из сопел газогорелочных устройств

Давление жидкой и паровой фазы в замкнутом объёме при заданной температуре определяется по точке пересечения изотермы с одной из пограничных кривых КМ или КП.

Давление в точке пересечения М и Е будет искомым. Если изотерма не пересекает пограничную кривую то это значит что при данной температуре газ не перейдёт в жидкое состояние, а давление его можно определить если известны его удельный объём, например изобара в точке пересечения изотермы T’E’ и изохоры Б’Б”.

Удельный объём насыщенной жидкости или пара можно определить по температуре или давлению в точке пересечения заданной изобары или изотермы с пограничными кривыми жидкости КМ или пара КП. Удельный объём газовой определяется по давлению и температуре в точке пересечения соответствующих изобар и изотерм.

Энтальпия жидкой паровой и газовой фазы определяется на оси абсцисс при заданных значениях давления и температуры в точке пересечения изобар с пограничными кривыми, линиями постоянной сухости или изотермами.

Теплота парообразования при заданном давлении определяется как разность энтальпий в точке Е и М заданной изобары с общими пограничными кривыми

Степень сухости пара Х определяется Л изобары с кривой постоянной сухости пара при данной энтальпии.

При расчёте процессов на диаграмму наносят вспомогательные линии. Так при дросселировании жидкой фазы от Р нач до Р кон наносят вертикальную линию МС (процесс идёт без подвода или отвода теплоты). Температура конца дросселирования определяется в точке С. Пересечение кривой сухости пара с изобарой Р кон показывает какое количество пара образовалось при дросселировании. Сжатие газа изображается на диаграмме адиабатами. Температура газа в конце сжатия определяется изотермой, проходящей через точку D’. Теоретическая работа сжатия 1кг газа определяется разностью теплосодержаний в точках D’ и A’.


Действительная работа сжатия будет несколько больше и определяется по формуле

Адиабатный КПД процесса сжатия (0,85-0,9)

6. Смеси газов и жидкостей. Пересчёт состава смесей

сжиженный углеводородный газоснабжение

Состав сжиженного газа в жидкой и паровой фазах может выражаться массовыми g i , объёмными y i и малярными долями для газов r i , для жидкостей Х.


Где m i - масса, кг

V i - объём, м 3

N i - число молей i-го компонента в смеси.

Для газовых (идеальных смесей) мольные и объёмные доли равны это следует из закона Авогадро

Пересчёт состава сжиженного газа из одного вида в другой производится следующим образом:

Для жидких смесей:

А) при известном массовом составе компонентов, объёмный и молярный состав определяется по формулам

Где ρ i и M i - соответственно плотность и молярная масса

Б) при заданном объёмном составе, массовый и молярный находятся по формулам

В) при известном молярном составе, массовый и объёмный определяются по формулам

Г) Для газовых смесей пересчёт из молярного в массовый производится по (5), а из массового в объёмный и мольный по (1) и (2).

7. Определение свойств СУГ

При известном составе сжиженного газа, давление смеси можно рассчитать по формулам:


Плотность газовой смеси заданного состава определяется:


Мольная доля i-ого компонента смеси

Плотность i-ого компонента смеси, кг/м 3

Она находится по таблице или рассчитывается по закону Авогадро:

Где - молекулярная масса i-ого компонента, кг/кмоль

Молекулярный объем i-ого компонента, м 3 /кмоль

Средняя плотность жидкой смеси при известном массовом составе определяется по формуле:

При известном молекулярном составе:

,

Где - плотность i-ого компонента входящего в жидкую смесь в жидкой фазе, кг/л

Плотность газовой смеси при повышенном давление находится из уравнения состояния для реальных газов.

,

Где - абсолютное давление (МПа) и t-ра смеси.

Газовая постоянная смеси, (Дж/кг К)

z-коэффициент сжимаемости, учитывающий отклонение реальных газов от з-нов идеальных газов.

Газовая постоянная смеси рассчитывается по универсальной газовой постоянной и по молекулярной массе смеси.


Коэффициент сжимаемости определяется по графику в зависимости от приведённых параметров (давление и температура) газа.

Среднее критическое давление и температура для смеси газов определяется по его составу.


Объем газа, получается при испарение смеси СУГ, м.б. найден по формуле:


Масса i-ого компонента смеси, кг

Молекулярная масса i-ого компонента смеси, кг/кмоль

V Mi -молекулярный объем i-ого компонента

Для подсчета низшей объемной температуры сгорания смеси СУГ используется следующая зависимость


Низшая объемная теплота сгорания i-ого компонента, кДж/м 3

Низшая массовая температура сгорания


Пределы воспламенения смеси СУГ, не содержащих балластных примесей, определяются:

L см - нижний или верхний предел воспламенения смеси газов.

Нижний или верхний предел воспламенения i-ого компонента.

. Схемы перелива СУГ. Перемещение СУГ за счет разности уровней

Существует ряд методов перемещения сжиженного газа из ж/д или автоцистерн в стационарные емкости. И наоборот, наполнения транспортных емкостей и баллонов из стационарных хранилищ. Свойства СУГ, являются кипящими жидкостями, с малой плотностью и температурой парообразования обусловливают специфичность для перемещения метода схем и оборудования.

СУГ перемещают:

за счет разности уровней

сжатием газов

с помощью подогрева или охлаждения

при помощи компрессора

при помощи насоса

взаимным вытеснением жидкости

За счет разности уровней

Использование гидростатического напора применяется при заполнении подземных резервуаров из железнодорожных и автоцистерн, а так же при разливе СУГ в баллоны, если позволяет рельеф местности. Что бы слить цистерны в резервуар, необходимо соединить их паровые и жидкостные фазы.

В сообщающихся сосудах жидкость устанавливается на одном уровне, поэтому жидкая фаза перетечет в нижестоящий резервуар.


Для создания достаточной скорости слива, при одинаковых температуре и давлении, в цистерне и резервуаре необходимо, что бы за счет гидростатического напора создавалась разность давлений не менее 0,7-0,1.

Минимальная необходимая величина гидростатического напора в этих условиях будет 14-20 метров жидкости.

В зимнее время цистерна имеет более низкую температуру, чем резервуар т.е. P газа в цистерне будет меньше, чем в резервуаре.

Поэтому для слива разность уровней должна компенсировать эту разность давлений

,

Где - давление газа в резервуаре, Па

Давление газа в цистерне

Плотность жидкой фазы СУГ, кг/м 3

Летом, в начальный момент слива, возможно расположение цистерн ниже резервуара. Но здесь скажется влияние температуры в резервуаре от более нагретой жидкости из цистерны, и величина перепада давления упадет примерно до 0. Слив прекратится. Поэтому летом, при сливе, паровые фазы автоцистерны и резервуара соединять не нужно.

«+» метода:

Простота схемы

2. Отсутствие механических агрегатов

Надежность работы всех узлов

Готовность схемы к работе в любой момент, независимо от наличия постороннего источника энергии

«-» метода:

Невозможность использования местности с гористым рельефом.

2. Большая продолжительность процесса.

Большие потери газа при отправлении его обратно в виде паров в слитых цистернах.

9. Газонаполнительные станции

ГНС являются базой снабжения систем газами и поставки потребителям сжиженных газов, поступающих с газобензиновых заводов.

На ГНС выполняются след. работы:

· -приём сжиженных газов от поставщика

· -слив сж. газов в свои хранилища

· -хранение СУГ в надземных, подземных или изотермических резервуарах, в баллонах или подземных пустотах.

· -слив неиспарившихся остатков из баллона и сж. газа из баллонов, имеющих к-л неисправности

· -разлив сж. газа в баллоны, передвижные резервуары и автоцистерны

· -приём пустых и выдача наполненных баллонов

· -транспортировка сж. газов по внутренней сети трубопровод

· -ремонт баллонов и их переосвидетельствование

Техническое обслуживание и ремонт оборудования на станции

В ряде случаев на ГНС производится:

· -заправка автомобилей, работающих на сж. газе из автозаправочной колонки

· -смешение паров газа с воздухом или низкокалорийными газами

· -выдача паров сж. газа газовоздушных и газовых смесей в гор. распределительные системы

Для выполнения этих операций на ГНС имеются след. подразделения и цеха:

· -сливная эстакада ж/д ветки или ввод тр-да с отключающими устройствами

· -база хранения СУГ, состоящая из надземных или подземных резервуаров, работающих под давлением, изотермич. резервуаров

· -насосно-компрессионый цех для слива СУГ их ж/д цистерн в хранилища и подача его для наполнения

· -цех для наполнения баллонов и слива из них неиспарившихся тяжёлых остатков

· -склад суточного запаса пустых и заполненных баллонов

· -колонки для заполнения автоцистерн

· -коммуникации жидкой и паровой фаз, связывающие все отделения ГНС и обеспечивающих их перемещение.

В зависимости от объёма хранилищ, способа установки резервуаров эти расстояния от 40 до 300 м.

Литература

1. Абрамочкин Е.Г.: Современная оптика гауссовых пучков. - М.: ФИЗМАТЛИТ, 2010

2. Алексеев Г.В.: Оптимизация в стационарных задачах тепломассопереноса и магнитной гидродинамики. - М.: Научный мир, 2010

Амусья М.Я.: Поглощение фотонов, рассеяние электронов, распад вакансий. - СПб.: Наука, 2010

Антонов В.Ф.: Физика и биофизика. - М.: ГЭОТАР-Медиа, 2010

Банков С.Е.: Электромагнитные кристаллы. - М.: ФИЗМАТЛИТ, 2010

Барабанов А.Л.: Симметрии и спин-угловые корреляции в реакциях и распадах. - М.: ФИЗМАТЛИТ, 2010

Белоконь А.В.: Математическое моделирование необратимых процессов поляризации. - М.: ФИЗМАТЛИТ, 2010

Бобошина С.Б.: Курс общей физики. - М.: Дрофа, 2010

Бройер Х.-П: Теория открытых квантовых систем. - Ижевск: Институт компьютерных исследований, 2010

Виноградов Е.А.: Термостимулированные электромагнитные поля твердых тел. - М.: ФИЗМАТЛИТ, 2010

Вирченко Ю.П.: Случайные множества с марковскими измельчениями в одномерном пространстве погружения. - Белгород: БелГУ, 2010

Г.П. Берман и др.; пер. с англ. Е.В. Бондаревой; под науч. ред. С.В. Капельницкого: Магнитно-резонансная силовая микроскопия и односпиновые измерения. - Ижевск: Ижевский институт компьютерных исследований, 2010

Голенищев-Кутузов А.В.: Фотонные и фононные кристаллы. - М.: ФИЗМАТЛИТ, 2010

Дьячков П.Н.: Электронные свойства и применение нанотрубок. - М.: БИНОМ. Лаборатория знаний, 2010

Газы углеводородные сжиженные (пропан-бутан, в дальнейшем СУГ) - смеси углеводородов, которые при нормальных условиях (атмосферное давление и Т воздуха = 0 ° С) находятся в газообразном состоянии, а при небольшом повышении давления (при постоянной температуре) или незначительном понижении температуры (при атмосферном давлении) переходят из газообразного состояния в жидкое.
Основными компонентами СУГ являются пропан и бутан. Пропан-бутан (сжиженный нефтяной газ, СНГ, по-английски - liquified petroleum gas, LPG) - это смесь двух газов . В состав сжиженного газа входят в небольших количествах также: пропилен, бутилен, этан, этилен, метан и жидкий неиспаряющийся остаток (пентан, гексан).
Сырьем для получения СУГ являются в основном нефтяные попутные газы, газоконденсатных месторождений и газы, получаемые в процессе переработки нефти.
С заводов СУГ в железнодорожных цистернах поступает на газонаполнительные станции (ГНС) газовых хозяйств, где хранится в специальных резервуарах до продажи (отпуска) потребителям. Потребителям СУГ доставляется в баллонах или автоцистернами.
В сосудах (цистернах, резервуарах, баллонах) для хранения и транспортировки СУГ одновременно находится в 2-х фазах: жидкой и парообразной. СУГ хранят, транспортируют в жидком виде под давлением, которое создаётся собственными парами газа. Это свойство делает СУГ удобными источниками снабжения топливом коммунально-бытовых и промышленных потребителей, т.к. сжиженный газ при хранении и транспортировке в виде жидкости занимает в сотни раз меньший объем, чем газ в естественном (газообразном или парообразном) состоянии, а распределяется по газопроводам и используется (сжигается) в газообразном виде.
Сжиженные углеводородные газы, подаваемые в населенные пункты, должны соответствовать требованиям ГОСТ 20448-90. Для коммунально-бытового потребления и промышленных целей стандартом предусматривается выпуск и реализация СУГ трех марок:
ПТ - пропан технический;
СПБТ - смесь пропана и бутана техническая;
БТ - бутан технический.

Марка Наименование Код ОКП
ПТ Пропан технический 02 7236 0101
СПБТ Смесь пропана и бутана технических 02 7236 0102
БТ Бутан технический 02 7236 0103
Наименование показателя Норма для марки Метод испытания
ПТ СПБТ БТ
1. Массовая доля компонентов, %: По ГОСТ 10679
сумма метана, этана и этилена Не нормируется
сумма пропана и пропилена, не менее 75 Не нормируется
сумма бутанов и бутиленов, не менее Не нормируется - 60
не более 60 -
2. Объемная доля жидкого остатка при 20 °С, %, По п. 3.2
не более 0,7 1,6 1,8
3. Давление насыщенных паров, избыточное, МПа, при температуре: По п. 3.3 или ГОСТ 28656
плюс 45 °С,не более 1,6 1,6 1,6
минус 20 °С,не менее 0,16 - -
4. Массовая доля сероводорода и меркаптановой серы, %, не более 0,013 0,013 0,013 По ГОСТ 22985
в том числе сероводорода, не более 0,003 0,003 0,003 По ГОСТ 22985 или ГОСТ 11382
5. Содержание свободной воды и щелочи Отсутствие По п. 3.2
6. Интенсивность запаха, баллы, не менее 3 3 3 По ГОСТ 22387.5 и п.3.4 настоящего стандарта

Применение СУГ по маркам связано с наружными температурами, от которых зависит упругость(давление) паров сжиженных газов, находящихся в баллонах на открытом воздухе или в подземных резервуарах.
В зимних условиях при низких температурах, для создания и поддержания необходимого давления в системах газоснабжения, в составе сжиженного газа должен преобладать более легко испаряющийся компонент СУГ- пропан. Летом основной компонент в СУГ - бутан.

Основные физико-химические свойства компонентов сжиженных углеводородных газов и продуктов их сгорания:
- температура кипения (испарения) при атмосферном давлении для пропана - 42 0 С, для бутана - 0,5 0 С;
Это означает, что при температуре газа выше указанных величин происходит испарение газа, а при температуре ниже указанных величин происходит конденсация паров газа, т.е. из паров образуется жидкость (конденсат сжиженного газа). Т.к. пропан и бутан в чистом виде поставляются редко, то приведенные температуры не всегда соответствуют температуре кипения и конденсации применяемого газа. Применяемый в зимнее время газ обычно нормально испаряется при температуре окружающего воздуха до минус 20 0 С. Если же заводы-изготовители поставят газ с повышенным содержанием бутана, то конденсация паров газа может быть и в летнее время при небольших заморозках.
- низкая температура воспламенения при атмосферном давлении:
для пропана - 504-588 0 С, для бутана - 430-569 0 С;
Это означает, что воспламенение(вспышка) может произойти от нагретых, но еще не светящихся предметов, т.е. без наличия открытого огня.
- низкая температура самовоспламенени я при давлении 0,1 МПа (1 кгс/см 2)
для пропана - 466 0 , для бутана - 405 0 С;
- высокая теплота сгорания (количество тепла, которое выделяется при сжигании 1 м 3 паров газа):
для пропана 91-99 МДж/м 3 или 22-24 тыс.ккал,
для бутана 118-128 МДж/м 3 или 28-31 тыс.ккал.
- низкие пределы взрываемости (воспламеняемости):
пропана в смеси с воздухом 2,1-9,5 об.%,
бутана в смеси с воздухом 1,5-8,5 об.%,
смеси пропана и бутана с воздухом 1,5-9,5 об.%.
Это означает, что газовоздушные смеси могут воспламеняться (взрываться) только в том случае, если содержание газа в воздухе или кислороде находится в определенных пределах, вне которых эти смеси без постоянного притока (наличия) тепла или огня не горят. Существование этих пределов объясняются тем, что по мере увеличения содержания в газовоздушной смеси воздуха или чистого газа уменьшается скорость распространения пламени, увеличиваются тепловые потери и горение прекращается.
С увеличением температуры газовоздушной смеси пределы взрываемости (воспламеняемости) расширяются.
- плотность паров газа (смеси пропана и бутана) - 1,9-2,58 кг/м 3 ;
Пары СУГ значительно тяжелее воздуха (плотность воздуха 1,29 кг/м 3) и собираются в нижней части помещения, где может образоваться взрывоопасная газовоздушная смесь при очень малых утечках газа. При затекании паров СУГ (в виде стелющегося тумана или прозрачного мерцающего облака) в не проветриваемые подвалы, устройства канализации, заглубленные помещения они могут оставаться там очень долго. Часто это происходит при утечках газа из подземных резервуаров и газопроводов. Особенно опасно то, что внешним осмотром такую утечку обнаружить нельзя, т.к. газ не всегда выходит на поверхность земли, а распространяясь под землей может попадать в канализацию или подвалы на большом удалении от места утечки.
- плотность газа в жидком состоянии - О,5-0,6 кг/л.
- коэффициент объемного расширения жидкой фазы СУ Г- в 16 раз больше, чем у воды. При повышении температуры газа его объём значительно увеличивается, что может привести к разрушению (разрыву) стенок сосуда с газом.
- для полного сгорания паров СУГ необходимо
на 1м 3 паров пропана - 24м 3 воздуха или 5,0 м 3 кислорода
на 1м 3 паров бутана - 31м 3 воздуха или 6,5 м 3 кислорода.
- объем паров газа с 1 кг пропана - 0,51 м 3 ,
с 1 л пропана - 0,269м 3 ,
с 1 кг бутана - 0,386м 3 ,
с 1 л бутана - 0,235м 3 .
- максимальная скорость распространения пламени горящего пропана- 0,821м/с, бутана - 0,826 м/с.
СУГ бесцветны (невидимы) и большей частью не имеют сильного собственного запаха, следовательно, в случае их утечки в помещении может образоваться взрывоопасная газовоздушная смесь. Для того, чтобы своевременно обнаружить утечки газа, горючие газы подвергают одоризации, т. е. придают им резкий специфический запах.
В качестве одоранта используют технический этилмеркаптан.

Этилмеркаптан - легкоиспаряющаяся жидкость с резким неприятным запахом.

Этилмеркаптан - бесцветная, прозрачная, подвижная, легковоспламеняющаяся жидкость с резким отвратительным запахом. Запах этилмеркаптана обнаруживается в очень низких концентрациях (до 2*10 -9 мг/л). Этилмеркаптан растворим в большинстве органических растворителей, в воде растворяется слабо. В разбавленных растворах этилмеркаптан существует в виде мономера, при концентрировании формируются димеры преимущественно линейного строения за счет образования водородных связей S-H...S. Этантиол легко окисляется. В зависимости от условий окисления можно получить диэтилсульфоксид (C 2 H 5 ) 2 SO (действием кислорода в щелочной среде), диэтилдисульфид (C 2 H 5 )SS(C 2 H 5 ) (действием активированного MnO 2 или перекиси водорода) и другие производные. В газовой фазе при 400°C этилмеркаптан разлагается на сероводород и этилен. В природе этантиол используется некоторыми животными для отпугивания врагов. В частности, он входит в состав жидкости, вырабатываемой скунсом.

Получение.

Промышленный способ получения этилмеркаптана основан на реакции этанола с сероводородом при 300-350°C в присутствии катализаторов.

C 2 H 5 OH + H 2 S --> C 2 H 5 SH + H 2 O

Применение.
  • в качестве одоранта природного газа, пропан-бутановой смеси, а также других топливных газов. Практически все топливные газы почти не имеют запаха, добавка этилмеркаптана позволяет вовремя обнаружить утечку газа.
  • как промежуточный реагент при получении некоторых видов пластмасс, инсектицидов, антиоксидантов.
  • Предельно допустимая концентрация этилмеркаптана в воздухе рабочей зоны - 1 мг/м 3 . Специфический запах этилмеркаптана ощущается при ничтожно малых концентрациях его в воздухе.
    Для придания запаха на заводах-изготовителях в СУГ добавляют этилмеркаптан в количестве 42-90 граммов на тонну жидкого газа, в зависимости от содержания в газе меркаптана серы.
    Запах СУГ, имеющих низкие пределы взрываемости, должен ощущаться при наличии их в воздухе: ПТ - О,5 об.%, СПБТ - 0,4% об.%, БТ - 0,3% об.%.
    Пары СУГ действуют на организм наркотически. Признаками наркотического действия являются недомогание и головокружение, затем наступает состояние опьянения, сопровождаемое беспричинной веселостью, потерей сознания. СУГ неядовит, но человек, находящийся в атмосфере с небольшим содержанием паров СУГ в воздухе, испытывает кислородное голодание, а при значительных концентрациях паров в воздухе может погибнуть от удушья.
    Предельно допустимая концентрация в воздухе рабочей зоны (в перерасчете на углерод) паров углеводородов от 100 до 300 мг/м 3 . Для сравнения можно отметить, что подобная концентрация паров газа примерно в 15-18 раз ниже предела взрываемости.
    При попадании жидкой фазы СУГ на одежду и кожные покровы вследствие ее моментального испарения происходит интенсивное поглощение тепла от тела, что вызывает обмораживание. По характеру воздействия обмораживание напоминает ожог. Попадание жидкой фазы на глаза может привести к потере зрения. Работая с жидкой фазой СУГ, нельзя надевать шерстяные и хлопчатобумажные перчатки, так как они не оберегают от ожогов (плотно прилегают к телу и пропитываются жидким газом). Необходимо пользоваться кожаными или брезентовыми рукавицами, прорезиненными фартуками, очками.
    При неполном сгорании паров СУГ выделяется окись углерода (СО) - угарный, являющийся сильным ядом, вступающим в реакцию с гемоглобином крови и вызывающим кислородное голодание. Концентрация угарного газа в воздухе помещения от 0,5 до 0,8 об.% опасна для жизни даже при кратковременном воздействии. Наличие 1об.% угарного газа в воздухе помещения через 1-2 минуты вызывает смерть. По санитарным нормам величина предельно допустимой концентрации угарного газа в воздухе рабочей зоны 0,03 мг/литр.

    Используемые источники
    1. Физико-химические свойства сжиженных углеводородных газов для коммунально - бытового потребления согласно Г0СТ 20448-90.