Ядерные реакторы подводных лодок. Реакторы ядерных энергетических установок для атомных подводных лодок

Для любой страны - это мощный геополитический механизм сдерживания. А подводный флот самим своим наличием влияет на международные отношения и эскалацию конфликтов. Если в XIX веке границу Британии определяли борта ее военных фрегатов, то в XX веке лидером Мирового океана становится военно-морской флот Соединенных Штатов Америки. И американские сыграли в этом не последнюю роль.

Первостепенное значение

Подводный флот приобретает для Америки все большее значение. Исторически территория страны была ограничена водными границами, затрудняющими скрытное нападение противника. С появлением в мире современных подводных субмарин и ракет "подводная лодка - воздух" эти границы становятся для Америки все более призрачными.

Обострившееся противостояние международных взаимоотношений с мусульманскими странами делает угрозу для жизни граждан Америки реальной. Иранские исламисты не оставляют попыток обзавестись ракетами «подводная лодка - воздух», и это угроза для всех прибрежных центров Америки. И в таком случае разрушения будут колоссальны. Противостоять нападению уже из-под воды может только такой же соперник.

Нынешний президент США Дональд Трамп в своих первых интервью заметил, что намерен и далее увеличивать подводный флот США. Но при одном условии - снижении его стоимости. Над этим стоит задуматься корпорациям, которые строят атомные американские подводные лодки. Прецедент уже есть. После того как Дональд Трамп сказал, что обратится в компанию Boeing за предложением более дешевых истребителей, компания Lockheed Martin снизила стоимость истребителя F -35.

Боевая мощь

Сегодня подводные лодки США преимущественно имеют атомные источники энергии. А это означает, что при проведении операций ограничения в боеспособности будут только в количестве пищи и воды на борту. Самый многочисленный класс субмарин «Лос-Анджелес». Это лодки третьего поколения с водоизмещением порядка 7 тонн, глубиной погружения до 300 метров и стоимостью порядка 1 миллиона долларов. Однако в настоящее время Америка заменяет их лодками четвертого поколения класса «Вирджиния», более оснащенными и стоящими 2,7 миллиона долларов. И цена эта оправдана их боевыми характеристиками.

Боевой состав

Сегодня лидирует и по количеству, и по оснащению морского вооружения. В военно-морские силы США входит 14 стратегических атомных подводных лодок и 58 многоцелевых подводных лодок.

Подводный флот американских военных оснащен двумя видами субмарин:

  • Океанские баллистические лодки. Глубоководные субмарины, цель которых доставка вооружения к пункту назначение и выпуск баллистических ракет. Другими словами их называют стратегическими. Оборонное оружие не представлено сильной огневой мощью.
  • «Лодки - охотники». Высокоскоростные лодки, цели и задачи которых разносторонни: доставка крылатых ракет и миротворческих сил в зоны конфликта, молниеносное нападение и уничтожение сил противника. Такие субмарины называют многофункциональными. их специфика - скорость, маневренность и скрытность.

Начало развития подводного мореплавания в Америке начинается с середины позапрошлого века. Объем статьи не предполагает такого массива информации. Сосредоточимся на атомном арсенале, который получил развитие после окончания Второй мировой войны. Краткий обзор подводного атомного арсенала Вооруженных сил Америки проведем, придерживаясь хронологического принципа.

Первые экспериментальные атомные

В на верфи в Гротоне в январе 1954 года была спущена на воду первая американская подводная лодка «Наутилус» (USS Nautilus) водоизмещением около 4 тысяч тонн и длиною в 100 метров. Она вышла в первое плавание через год. Именно «Наутилус» в 1958 году первый прошел под водой Северный полюс, что чуть не закончилось трагедией - поломкой перископа из-за сбоя систем навигации. Это была экспериментальная и единственная многоцелевая торпедная лодка с сонарной установкой в носовой части, а торпедами и в задней. Подводная лодка «Барракуда» (1949-1950) показала такое расположение наиболее удачным.

Атомные американские подводные лодки появлением обязаны военно-морскому инженеру, контр-адмиралу Хайману Джорджу Риковеру (1900-1986).

Следующим экспериментальным проектом стала USS Seawolf (SSN-575), выпущена тоже в единственном экземпляре в 1957 году. Она имела реактор с жидким металлом в качестве теплоносителя в первом контуре реактора.

Первые серийные атомные

Серия из четырех подводных лодок, построенных в 1956-1957 годах - «Скейт» (USS Skate). Они находились в составе вооруженных сил США и списаны были в конце 80-х годов прошлого столетия.

Серия из шести лодок - «Skipjack» (1959). До 1964 года это самая крупная серия. Лодки имели «альбакоровскую» форму корпуса и наивысшую скорость до серии «Лос-Анджелес».

В это же время (1959-1961) запускается специализированная серия атомных лодок в количестве пяти - «Джордж Вашингтон». Это лодки первого баллистического проекта. На каждой лодке находилось 16 ракетных шахт для ракет Polaris A-1. Точность стрельбы увеличивал гигроскопический успокоитель качки, в пять раз снижающий амплитуду на глубине до 50 метров.

Затем последовали проекты атомных подводных лодок по одному экспериментальному экземпляру серий Triton, Halibut, Tullibe. Американские конструкторы экспериментировали и совершенствовали системы навигации и энергетические системы.

Крупная серия многофункциональных лодок, пришедшая на смену Skipjack, состоит из 14 атомных субмарин Treaher.Последняя была списана в 1996 году.

Серия Benjamin Franklin - подводные лодки типа ракетоносцев «Лафайет». Сначала они были вооружены баллистическими ракетами. В 70-х годах перевооружены ракетами «Посейдон», а затем «Трайдент-1». Двенадцать лодок серии Benjamin Franklin в 1960 годах вошли в состав флота стратегических ракетоносцев, названного «41 на страже Свободы». Все корабли этого флота были названы именами деятелей американской истории.

Самая крупная серия - USS Sturgeon - многофункциональных атомных лодок включает 37 субмарин, созданных в период 1871 по 1987 годы. Отличительная особенность - пониженный уровень шума и датчики для подледного плавания.

Лодки, несущие службу в ВМФ США

С 1976 года по 1996 оснащение ВМФ производится многоцелевыми лодками типа Los Angeles. Всего выпущено 62 лодки данной серии, это самая многочисленная серия субмарин многоцелевого назначения. Вооружение торпедное и вертикальные пусковые установки ракет типа «Томагавк» с системами самонаведения. Девять лодок класса Los Angeles участвовали в Реакторы GE PWR S6G мощностью 26 МВт разработаны "Дженерал Электрик". Именно с этой серии начинается традиция называть лодки именами городов Америки. Сегодня в составе ВМФ США 40 лодок данного класса несут боевую службу.

Серия стратегических атомных подводных лодок, выпущенных с 1881 по 1997 год, состоит из 18 субмарин с баллистическими ракетами на борту - серия «Огайо». Подводная лодка этой серии вооружена 24 межконтинентальными баллистическими ракетами с индивидуальным наведением. Для защиты они вооружены 4 торпедными аппаратами. «Огайо» - подводная лодка, составляющая основу наступательных сил флота США, 60% времени он находятся в море.

Последний проект атомных подлодок многоцелевого назначения третьего поколения «Сивулф»(1998-1999). Это самый секретный проект ВМФ США. Его называли «усовершенствованный Лос-Анджелес» за особенную бесшумность. Он появлялся и исчезал не замеченный радарами. Причина - специальное звукоизолирующее покрытие, отказ от винта в пользу двигателя типа водомета и широкого внедрения датчиков шума. Тактическая скорость в 20 узлов делает его таким же шумным, как «Лос-Анджелес», стоящий на причале. Всего лодок этой серии три: «Сивулф», «Коннектикут» и «Джимми Картер». Последняя введена в эксплуатацию в 2005 году, и именно этой лодкой управляет терминатор во втором сезоне телесериала «Терминатор: Хроники Сары Коннор». Это лишний раз подтверждает фантастичность этих лодок как внешне, так и по содержанию. «Джимми Картер» называют еще «белым слоном» среди субмарин за его размеры (лодка длиннее собратьев на 30 метров). А по своим характеристикам эта субмарина может считаться уже подводным кораблем.

последнего поколения

Будущее в подводном кораблестроении началось с 2000 годов и связано с новым классом лодок класса USS Virginia. Первая лодка такого класса SSN-744 спущена на воду и введена в эксплуатацию в 2003 году.

Подводные лодки ВМС США данного типа называют складом оружия из-за оснащения мощным арсеналом, и «идеальным наблюдателем», из-за самых сложных и чувствительных сенсорных систем, когда-либо устанавливаемых на субмаринах.

Передвижение даже по относительному мелководью обеспечивает атомный двигатель с ядерным реактором, план которого засекречен. Известно, что реактор рассчитан на срок службы до 30 лет. Уровень шумности снижается за счет системы изолированных камер и современной конструкции энергетического блока с «глушащим» покрытием.

Общие тактико-технические характеристики лодок класса USS Virginia, которых на сегодня введено в эксплуатацию уже тринадцать:

  • скорость до 34 узлов (64 км/ч);
  • глубина погружения составляет до 448 метров;
  • от 100 до 120 членов экипажа;
  • надводное водоизмещение - 7,8 тонны;
  • длина до 200 метров, а ширина около 10 метров;
  • атомная силовая установка типа GE S9G.

Всего в серии предусмотрен выпуск 28 АПЛ "Вирджиния" с постепенной заменой арсенала ВМФ на лодки четвертого поколения.

Лодка Мишель Обамы

В августе прошлого года на военной верфи в Гротоне (штат Коннектикут) состоялся ввод в эксплуатацию 13 субмарины класса USS Virginia с бортовым номером SSN -786 и названием «Иллинойс» (Illinois). Названа она в честь родного штата тогдашней первой леди Мишель Обамы, которая принимала участие в ее спуске на воду в октябре 2015 года. Инициалы первой леди, по традиции, выбиты на одной из деталей субмарины.

Атомная подводная лодка «Иллинойс» длиной 115 метров и с 130 членами экипажа на борту оснащена необитаемым подводным аппаратом для обнаружения мин, шлюзом для водолазов и другим дополнительным оборудованием. Предназначение данной субмарины проведение прибрежных и глубоководных операций.

Вместо традиционного перископа на лодке действует телескопическая система с телекамерой, установлен лазерный датчик инфракрасного наблюдения.

Огневая мощь лодки: 2 установки револьверного типа по 6 ракет и12 вертикальных крылатых ракет класса «Томагавк», а также 4 торпедных аппарата и 26 торпед.

Общая стоимость субмарины - 2,7 миллиарда долларов.

Перспектива военного подводного потенциала

Высшие чины ВМФ США настаивают на постепенной замене дизельно-топливных подводных лодок на лодки, практически не имеющие ограничений в ведении боевых операций - с атомными двигательными установками. Четвертое поколение АПЛ "Вирджиния" предусматривает выпуск 28 субмарин данного класса. Постепенная замена арсенала военно-морских сил на лодки четвертого поколения повысит рейтинг и боеспособность американской армии.

Но конструкторские бюро продолжают работать и предлагать свои проекты армии.

Десантные американские подводные лодки

Скрытная высадка войск на территории противника - вот цель всех десантных операций. После Второй мировой войны такая технологическая возможность у Америки появилась. Бюро кораблестроения (Bureau of Ships) получило заказ на десантную субмарину. Проекты появились, но десантные войска не имели финансового обеспечения, а флот не заинтересовался идеей.

Из всерьез рассматриваемых проектов можно упомянуть проект фирмы Seaforth Group, появившийся в 1988 году. Спроектированная ими десантная субмарина S-60 предполагает спуск в воду на расстоянии 50 километров от берега, погружение на глубину 5 метров. Со скоростью в 5 узлов подводный катер достигает береговой линии и высаживает 60 десантников по выдвигающимся мостикам на расстоянии до 100 метров от берега. Пока проект никто не купил.

Надежность, проверенная временем

Самая старая подводная лодка в мире, которая до сегодняшнего дня находится на вооружении - это подводная лодка "Балао SS 791 Hai Shih" («Морской лев»), входящая в состав ВМС Тайваня. Американская субмарина времен Второй мировой войны, построенная на верфи Portsmouth Naval Shipyard, в 1945 году пополнила военный подводный флот США. На ее счету один боевой поход в августе 1945 в Тихом океане. После нескольких модернизаций, в 1973 году она была передана Тайваню и стала первой действующей лодкой Китая.

В январе 2017 года в прессе появилась информация о том, что в течение 18 месяцев планового ремонта на верфях судостроительной корпорации Taiwan International Shipbuilding Corporation «Морскому льву» проведут общий ремонт и замену навигационного оборудования. Эти работы продлят срок службы субмарины до 2026 года.

Ветеран субмарин американского производства, единственный в своем роде, планирует отметить восьмидесятилетний юбилей в боевом строю.

Исключительно трагические факты

Открытой и гласной статистике по потерям и аварийности в подводном флоте США нет. Впрочем, то же самое можно сказать и о России. Те факты, которые стали достоянием общественности, будут представлены в данной главе.

В 1963 году двухдневный тестовый поход закончился гибелью американской субмарины «Трешер». Официальная причина катастрофы - поступление воды под корпус лодки. Заглушенный реактор обездвижил субмарину, и она ушла на глубину, забрав жизнь 112 членов экипажа и 17 гражданских специалистов. Обломки субмарины находятся на глубине 2 560 метров. Это первая технологическая авария атомной подводной лодки.

В 1968 году в Атлантическом океане бесследно пропала многоцелевая атомная субмарина «Скорпион» (USS Scorpion). Официальная версия гибели - детонация боекомплекта. Однако и сегодня тайна гибели данного судна остается загадкой. В 2015 году ветераны ВМФ США в очередной раз обратились к правительству с требованием создать комиссию по расследованию данного инцидента, уточнения количества жертв и определения их статуса.

В 1969 году курьезно затонула подводная лодка USS Guitarro с бортовым номером 665. Произошло это у причальной стенки и на глубине в 10 метров. Несогласованность действий и халатность специалистов по калибровке инструментов привели к затоплению. Поднятие и восстановление лодки стоило американскому налогоплательщику порядка 20 миллиона долларов.

Лодка класса «Лос-Анджелес», которая принимала участие в съемках фильма «Охота за Красным Октябрем», 14 мая 1989 года в районе берегов Калифорнии зацепила трос, соединяющий буксир и баржу. Лодка осуществила погружение, затянув за собой буксир. Родственники одного члена экипажа буксира, погибшего в тот день, получили компенсацию от ВМФ в размере 1,4 миллиона долларов.

Ядерная энергетика и атомный подводный флот
Дата: 18/05/2009
Тема: Атомный флот

В.А.Лебедев, к.т.н., проф., ЦНИИ ГНЦ РФ им. ак.А.Н.Крылова, председатель Правления Северо-Западного отделения Ядерного общества

В 2008 г. подводники, проектировщики, судостроители и судоремонтники отметили 50-летний юбилей атомного подводного флота. В человеческой жизни 50 лет - это много. Для мироздания - это лишь момент. Атомный подводный флот создавался усилиями всего советского народа, его учеными, специалистами и рабочими. И все-таки, основным действующим лицом, управляющим этой сложнейшей и опасной техникой, все эти 50 лет был и остается человек, моряк, подводник - специалист по эксплуатации АЭУ.

Исторические вехи


9 сентября 1952 г. И.Сталин подписал постановление Правительства СССР «О проектировании и строительстве объекта 627». К проектированию были привлечены 38 специализированных НИИ и КБ, а к созданию первой атомной подводной лодки - 27 предприятий по всей стране.


1954 г.- началось формирование экипажей для первой атомной подводной лодки (АПЛ),


1955 г. - в США вошла в строй первая АПЛ «Наутилус»,

Пущена первая атомная энергетическая установка (АЭУ) в ФЭИ (Обнинск),

Начата подготовка экипажей АПЛ «К-3» и «К-5»,


1956 г.- пущен стенд-прототип реактора с жидкометаллическим теплоносителем (ЖМТ),

Начата подготовка экипажа АПЛ с АЭУ на ЖМТ «К-27».


1957 г.- спущена на воду АПЛ «К-3».


1958 г.- на АПЛ «К-3» поднят флаг ВМФ, получен первый пар от АЭУ, дан самостоятельный ход.

Под руководством С.Н.Ковалёва начата работа над АПЛ второго поколения проекта 667А,


1960 г.- на боевое дежурство вышла американская АПЛ «George Washington» с 16 баллистическими ракетами (БР) «Polaris» на борту,


1964 г.- заложен первый корпус АПЛ 667 проекта («К-137») на Северодвинском машиностроительном предприятии (СМП).


1967 г.- АПЛ «К-137» вошла в состав Северного флота.

Руководители и участники проектов

Всех перечислить невозможно. Назову основных руководителей проектов, участвовавших в создании АПЛ:


научные руководители - А.П. Александров, А.И.Лейпунский.


Главные конструкторы:


627 проект -- В.Н.Перегудов,


645 проект -- В.Н.Перегудов, А.К. Назаров,


658, 667, 941 проекты -- С.Н.Ковалёв,


659, 949 проекты -- П.П.Пустынцев, И.Л.Базанов (949),


670 проект -- И.М.Иоффе, В.П.Воробьёв,


671,971 проекты --Г.Н.Чернышёв,


945 проект -- Н.И. Кваша,


885 проект -- Е.Н.Кормилицын,


705 проект -- М.Г.Русанов, В.А.Ромин,


661 проект -- .Н.Исанин, Н.Ф.Шульженко,


685 проект-- Н.А.Климов, Ю.Н. Кормилицын.


Главный конструктор АЭУ -- Н.А. Доллежаль.


Главный конструктор ПГ - Г.А. Гасанов.

Для создания атомного флота были сформированы специальные конструкторские бюро :
СКБ -143 «Малахит», которым были выполнены 627, 645, 671, 705, 971, 661 проекты АПЛ.

СКБ-18 «Рубин»: проекты 658, 659, 675, 667, 941, 685, 885.


СТБ-112 «Лазурит»: проекты 670, 945.

Атомные подводные лодки строились на четырёх судостроительных заводах :


Северное машиностроительное предприятие (завод № 402, ПО «Севмаш») в Северодвинске, на котором, начиная с 1955 г., было построено 125 АПЛ. Это самый мощный судостроительный завод в Европе, а возможно, и в мире.


Амурский завод (завод № 199) в Комсомольске-на-Амуре, с 1957 г. построено 56 АПЛ.


- «Красное Сормово» (завод № 112) в Нижнем Новгороде, с 1960 г. построено 25 АПЛ (с достройкой и испытаниями в Северодвинске).


Ленинградское Адмиралтейское Объединение (завод № 194), с 1960 г. построено 39 ПЛ.


Четыре поколения атомных подводных лодок


Условное деление лодок по поколениям связано, по-видимому, с развитием систем автоматического управления, хотя и другая техника и энергетика также ранжирована по поколениям.


К первому поколению АПЛ относятся 627 и 627А проекты, по которым на Севмашпредприятии было построено 13 лодок (1955-1963 гг.), проекты 658 и 658М - 8 лодок (1958-1964), проекты 659 и 659Т - 5 лодок (1957—1962), проекты 675, 675М, 675МКВ - 29 лодок (1961—1966).


Ко второму поколению относятся проекты: 667А -34 АПЛ (1964-1972 гг.). Они оснащались новыми ракетными комплексами, впоследствии модернизированными, что приводило и к модернизации лодок-носителей. За 667А проектом последовали 667Б, БД, БДР, БДРМ - 43 лодки (1971-1992 гг.), проекты 670А и 670М - 17 АПЛ (1973-1980 гг.), проекты 671, 671РТ, 671РТМ - 48 АПЛ (1965-1987 гг.).


Лодки второго поколения отличались своей надёжностью и безотказностью. Мне довелось служить на атомной подводной лодке 671 проекта. При выполнении боевых задач они показали себя прекрасно.


Третье поколение АПЛ начало создаваться в середине 1970-х гг. Оно представлено подводными лодками следующих проектов:


941 - 6 лодок (1977-1989 гг.), уникальный проект, внесённый в книгу Гиннеса, оснащён ракетным комплексом «Тайфун»,


949 и 949А -12 АПЛ (1978-1994 гг.),


945, 945А, 945Б - 6 лодок с титановым корпусом (1982-1993 гг.),


971 - 14 АПЛ (1982-1995 гг., 2008 г.).


К четвёртому поколению относятся проекты 885 и 955 (1993-2008 гг.). Они создавались в самый тяжёлый период для нашего общества, когда была в значительной степени разрушена и судостроительная база, и сам флот. По своей конструкторской идее, содержанию, приборной начинке эти лодки являются очередным шагом вперед в развитие морской подводной техники.


Уникальные лодки-истребители 705 и 705К проектов (7 АПЛ) с титановым корпусом, подводной скоростью 41 узел, высокой степенью автоматизации и энергообеспечением от АЭУ с реактором на ЖМТ, были созданы в начале 1970 гг. История их создания, эксплуатации и вывода с флота сами по себе уникальны и требуют отдельного повествования. Нерешённые вопросы с обслуживающей инфраструктурой, их эксплуатацией привели к недолгой жизни атомных лодок этого проекта.


Кроме серийных проектов АПЛ были созданы несколько опытных лодок:


В 1958-1963 гг. опытная АПЛ 645 проекта с двумя ЖМТ реакторами,


В 1963-1969 гг. лодка с титановым корпусом 661 проекта, уникальная по подводной скорости (44,7 узла),


В 1978-1984 гг. глубоководная лодка с титановым корпусом 685 проекта «Комсомолец», совершившая погружение на глубину 1020 м (мировой рекорд для боевых подводных лодок).

Атомные подводные лодки не могут существовать без обслуживающей инфраструктуры. На Севере и на Тихоокеанском флоте функционировали судоремонтные заводы, часть которых находилась в ведомстве ВМФ, другая - в судостроительной отрасли. Техническое обслуживание и ремонт АПЛ на Севере производились на пяти заводах: СЗР-10 в г. Полярном, СЗП-82 (Сафоново), СЗР-35 (Роста), СЗР «Нерпа» (Снежногорск), ГМП «Звёздочка» (Северодвинск). Кроме того, судоремонт осуществлялся плавучими средствами технологического обслуживания, входившими в состав ВМФ. Они комплектовались спецтанкерами для хранения и перевозки жидких радиоактивных отходов, плавбазами с системами перезарядки ядерных реакторов по месту базирования АПЛ, плавъёмкостями и хранилищами ОЯТ, ТРО и ЖРО.


Атомные энергетические установки в корабельной энергетике

В 1952 году начались работы по созданию первой атомной подводной лодки. Необходимо было решить ряд новых инженерно-конструкторских задач. В первую очередь - создание энергетического блока атомного корабля, т.е. создание реакторной установки, систем и механизмов, обеспечивающих ее работу.

Научным руководителем разработок был назначен академик А.П.Александров, главным конструктором по энергетике - академик Н.А. Доллежаль.

Первое поколение паропроизводящей установки (ППУ) не имела специального названия. Тип реактора, задействованного в этой ППУ -- ВМ-А. Типы ППУ второго поколения: ОК-300, ОК- 350, ОК-700 на 667 проекте. Типы ППУ третьего поколения: ОК-650, ОК-650Б, ОК-650М -01.


Типы ППУ на реакторах с ЖМТ: ВТ-1,ОК-550. В этих установках были задействованы


реакторы РМ-1 мощностью 73 МВт и БМ-40А мощностью 155 МВт.

На первом поколении ППУ была использована традиционная, разветвлённая схема компоновки, при которой реактор, парогенератор и ЦНПК монтировались отдельно. Они соединялись протяжёнными патрубками, что снижало эффективность, живучесть, надёжность ППУ.


На втором поколении применена блочная компоновка. Реактор и парогенератор соединялись патрубком «труба в трубе». На парогенераторе был смонтирован ЦНПК. Протяжённость трубопроводов при такой компоновке удалось существенно сократить.


Дальнейшее развитие этой идеи было реализовано на третьем поколении ППУ: при сохранении блочной компоновки основное оборудование монтировалось в виде парогенерирующего блока (ПГБ), в котором были объединены реактор и парогенератор Четвёртое поколение практически повторяет предыдущую схему. На пятом поколении планируется реализовать моноблочное исполнение.

Типы реакторов


При создании АПЛ было разработано несколько типов корабельных реакторов. В основном на АПЛ установлены модификации атомных установок с реакторами типа ВВЭР. Главное отличие ядерных установок атомных станций от ЯЭУ атомных ПЛ состоит в том, что при меньших размерах на ЯУ АПЛ достигается относительно большая выходная мощность.

Обогащение ядерного топлива АЭС по U 235 не превышает 4 %, в то время как уровень обогащения U 235 в топливе АПЛ может достигать 90 %, что позволяет производить замену топлива АПЛ гораздо реже, чем это делается на АЭС. Тепловая мощность реакторов отечественных АПЛ варьируется от 10 МВт на небольших ядерных установках, используемых на АПЛ пр.1910, до 200 МВт в реакторах, установленных на АПЛ пр.885 класса "Северодвинск".

Для АПЛ был выбран водо-водяной реактор, аналогов которому в стране не существовало (работы над реактором такого типа для АЭС начались только в 1955 году). При разработке водо-водяных реакторов необходимо было решить вопросы оптимизации тепловой схемы ЯР, определить их параметры, смоделировать схемы регулирования нейтронных процессов в ЯР, решить проблему глубокого выгорания ядерного топлива и накопления осколков деления U 235 , создать теплотехническую модель атомной установки, разработать схему автоматического управления АЭУ.

Создание транспортной атомной установки на тот момент было огромным техническим прогрессом. Была создана малогабаритная, высоконапряженная и высокоманевренная ЯЭУ, удовлетворявшая весо-габаритным требованиям для подводной лодки. В последующем, на основе этой атомной установки было создано 4 поколения атомных установок и их модификаций. На лодках первого поколения был установлен реактор ВМ-А мощностью 70 МВт. Для второго поколения лодок были разработаны два типа реакторов: ВМ-4 (мощность 72 МВт) на 671 проекте и ВМ-4-1 (мощность 90 МВт) на 667 проектах. Третье поколение АПЛ оснащалось реакторами ОК-650Б3 (мощностью 190 МВт). Более чем двукратное увеличение мощности при практически тех же габаритах активной зоны потребовало увеличения обогащения ядерного топлива ТВЭЛов и привело к росту энергонапряжённости активной зоны, то есть количества энергии, теплоты, снимаемых с единицы объёма.

Основными недостатками атомных установок первого поколения были:

Большая пространственная распределенность и большой объем первого контура, наличие трубопроводов большого диаметра, соединяющих основное оборудование, т.е. реактор, парогенераторы, насосы, теплообменники, компенсаторы объема и др. Это создавало серьезные проблемы в организации защиты при аварийной разгерметизации первого контура, а также при разрыве импульсных трубок, соединяющих первый контур с контрольно-измерительными приборами,


Невысокая надежность оборудования и большие массово-габаритные характеристики при высоких технологических и эксплуатационных параметрах,


-низкий уровень автоматизации процессов управления атомной установкой, низкая надежность и недостаточная достоверность показаний контрольно-измерительных приборов, а также систем управления и защиты ядерного реактора,

Недостаточная прочность третьего барьера безопасности (аппаратной выгородки, парогенераторной выгородки, насосной выгородки, выгородки СУЗ).


-недостаточно надежная система контроля за ядерными процессами, происходящими в реакторе. Пусковая аппаратура позволяла контролировать ядерные процессы в реакторе во время пуска только при выходе на его минимально контролируемый уровень мощности.

Недостатки в физических характеристиках и конструкции компенсирующих решеток, что в совокупности с несовершенством перегрузочного оборудования приводило к авариям.

В настоящее время, все подводные лодки первого поколения выведены в отстой с целью их дальнейшей утилизации.

В 1960-е гг. были спроектированы, заложены и начали строиться лодки второго поколения проектов 667, 670 и 671, -- самой большой серии подводных лодок, строительство которой завершилось в 1990 г. Первая подводная лодка второго поколения пришла на Северный флот во второй половине 1967 г.]

Атомная паропроизводящая установка второго поколения создавалась на опыте эксплуатации первого поколения и с учетом ее недостатков. Предполагалось, что за счет обеспечения высокого качества трубопроводов, оборудования и других компонентов ЯЭУ можно будет избежать серьезных аварий.

Исходя из опыта эксплуатации АЭУ первого поколения, где главные "неприятности" приносили течи воды первого контура во второй (в основном через парогенераторы) и течи наружу (в насосные аппаратные и парогенераторные выгородки), для второго поколения была изменена компоновочная схема атомной установки. Она оставалась петлевой, однако были существенно сокращены пространственная распределенность и объемы первого контура. Применена схема «труба в трубе» и схемы навешанных насосов первого контура на парогенераторы. Сокращенно количество трубопроводов большого диаметра, соединяющих основное оборудование (фильтр 1 контура, компенсаторы объема и т.д.). Практически все трубопроводы первого контура (малого и большого диаметра) были размещены в необитаемых помещениях под биологической защитой. Существенно изменились системы контрольно-измерительных приборов и автоматики атомной установки. Увеличилось количество дистанционно-управляемой арматуры (клапанов, задвижек, заслонок и т.д.). Подводные лодки второго поколения перешли на источники переменного тока. Турбогенераторы (основные источники электроэнергии) стали автономными.

Основным недостатком ЯЭУ второго поколения с точки зрения ядерной и радиационной опасности являлась ненадежность основного оборудования (активных зон, парогенераторов, систем автоматики). Аварийные происшествия и поломки были связаны в основном с разгерметизацией оболочек ТВЭЛов, с течами воды первого контура во второй через парогенераторы, а также с выходом из строя систем автоматики или с возможностью ее работы в таком режиме, когда мог произойти несанкционированный пуск ядерного реактора. Остались нерешенными проблемы ядерной безопасности, связанные с аварийным расхолаживанием ЯР при полном обесточивании корабля; контролем за ядерными процессами в реакторе, когда он находится в подкритическом состоянии, предотвращением полного осушения активной зоны при разрыве первого контура.

При проектировании ЯЭУ третьего поколения (начало 1970-х гг.) была разработана концепция по созданию систем безопасности, включая системы аварийного расхолаживания (охлаждения) и локализации аварии. Эти системы рассчитывались на максимальную проектную аварию, в качестве которой принимался мгновенный разрыв трубопровода теплоносителя на участке максимального диаметра.

Для кораблей третьего поколения была применена блочная схема компоновки, которая позволила повысить надежность основного оборудования АЭУ, использовать режим естественной циркуляции по первому контуру на мощности реактора до 30% от номинальной. Такая компоновка ЯЭУ позволила уменьшить габариты при одновременном увеличении ее мощности и улучшении других эксплуатационных параметров.

Кроме того, в АЭУ 3 поколения были внесены прогрессивные изменения:
- внедрена система безбатарейного расхолаживания (ББР), которая автоматически вводится в работу при исчезновении электропитания.
- изменилась система управления и защиты реактора. Импульсная пусковая аппаратура позволила контролировать состояние реактора на любом уровне мощности, в том числе, и в подкритическом состоянии.

В конструкции компенсирующих органов был использован принцип "самохода", который при исчезновении электропитания обеспечивал опускание компенсирующих групп на нижние концевики. Будь эта идея реализована раньше, возможно, не погиб бы матрос Сергей Перминов, вручную опустивший компенсирующие решётки для глушения реактора на АПЛ «К-219», затонувшей в Атлантическом океане.

Главными проблемами ЯЭУ третьего поколения оставались проблемы надежности основного оборудования: активных зон, блоков очистки и расхолаживания. Проблемы с надежностью основного оборудования связаны, в основном, с высокой цикличностью процессов, происходящих в АЭУ при ее эксплуатации.

Атомная установка четвертого поколения (на строящейся в Северодвинске АПЛ 885 проекта) представляет собой моноблок с интегральной схемой компоновки. Это позволяет локализовать теплоноситель первого контура в корпусе моноблока и исключить патрубки и трубопроводы большого диаметра. Такая установка создавалась с учетом всех требований ядерной безопасности.

Особенности парогенераторов

Главным конструктором парогенераторов на Балтийском заводе был Генрих Алиевич Гасанов. В ППУ первого поколения были применены парогенераторы ПГ-13, ПГ-13У, ПГ-14Т. На первых порах пытались рассматривать разные варианты конструкций. Все эти ПГ были змеевиковыми, прямоточными, как правило, неремонтопригодными. Первый контур в трубе, второй в межтрубном пространстве. Фактический ресурс составлял всего 200-500 часов. В силу слабой отработанности технологий серьёзные проблемы были с водным режимом. После эксплуатации в течение нескольких сотен часов «бочки» начинали течь.


Более совершенные ремонтопригодные парогенераторы появились на втором и третьем поколениях АПЛ. На втором поколении использовался парогенератор ПГ-ВМ-4Т с первым контуром в трубе, втором в межтрубном пространстве. В варианте парогенератор ПГ-4Т второй контур был в трубе, а первый в межтрубном пространстве. Ресурс этих парогенераторов составлял уже 40-50 тыс.часов.


Парогенераторы паропроизводящей установки ОК-650 выполнялись в двух вариантах: на АПЛ 941 проекта остались змеевиковые ПГ. На других проектах стали использовать кассетные прямотрубные ПГ с двойным обогревом рабочего тела, что позволило увеличить ресурс до 50-60 тыс. часов.

От поколения к поколению лодок возрастала и мощность на валу главного турбозубчатого агрегата (ГТЗА).


На первых проектах 627, 675,658 она составляла 2 по 17500 л.с., на 659 проекте 30000 л.с. На лодках второго поколения: на 667 проекте -- 2 по 20000 л.с., на 670 проекте -- 18000 л.с., на 671 проекте -- 31000 л.с. На 670 проекте впервые в отечественном подводном судостроении была использована одновальная схема ПЛ с одним реактором ВВЭР и одним ГТЗА. Такое же решение было впоследствии применено на 705, 945 и 971 проектах АПЛ.


На лодках третьего поколения 941 и 949 проектов мощность ГТЗА возросла до 2 по 50000 л.с., на 945 проекте -- 47000л.с., на 971 проекте -- 43000 л.с., на 645 проекте -- 35000 л.с.

Активные зоны

Над конструкцией активных зон (АЗ) для корабельных реакторов работало много коллективов. На первом поколении реакторов использовались следующие типы АЗ: ВМ-А, ВМ-АЦ, ВМ-1А, ВМ-1АМ, ВМ-2А, ВМ-2Аг. На самом деле типов АЗ было гораздо больше. Здесь перечислены далеко не все. Активные зоны реакторов отечественных АПЛ состоят из 248-252 тепловыделяющих сборок в зависимости от типа реактора. Каждая сборка состоит из нескольких десятков топливных элементов. Кампания АЗ увеличивалась от 1,5 до 5 тыс. часов. В качестве топливной композиции использовался UO 2 , UAl 3 , хорошо зарекомендовавший себя и применявшийся впоследствии в АЗ реакторов следующих поколений. По мере роста мощности реакторов менялось и обогащение ядерного топлива: от 6, 7,5 и 21 % на первом поколении до 36/45 на втором и третьем поколениях, и даже до 90 % обогащения на реакторах с ЖМТ. На третьем поколении АЭУ было применено профилирование активной зоны ядерным топливом и выгорающим поглотителем.


В первоначальных конструкциях АЗ были применены короткостержневые и длинностержневые, потом четырёхкольцевые и двухкольцевые типы ТВЭЛов. На втором поколении использовались стерженьковые и двухкольцевые ТВЭЛы. Кстати, зона с 2-х кольцевыми ТВЭЛами - единственная из зон, которая полностью вырабатывала свой энергоресурс. Для третьего поколения были созданы крестообразные ТВЭЛы, имевшие целый ряд преимуществ. Крестообразная конструкция обеспечивала максимальную площадь обогрева. Кроме того, закрученный профиль ТВЭЛа позволяет турбулизировать поток теплоносителя, а также использовать принцип самодистанционирования.


На третьем поколении АПЛ, для того, чтобы практически при том же объёме получить мощность 190 МВт, потребовалось почти в три раза увеличить энергонапряжённость АЗ - с 85 до 224 кВт/л.


Свои особенности имели и системы управления защитой (СУЗ) на разных поколениях лодок. Для компенсации реактивности на первом поколении АПЛ устанавливались огромные компенсирующие решётки КР-1. Управлялись они дистанционно или вручную. На втором поколении органы компенсации реактивности были разделены на 2 части - центральную решётку (ЦКР) и периферийные решетки (ПКР) -2(4) (в зависимости от типа реактора). На третьем поколении стержни автоматического регулирования (АР) отсутствуют. Регулирование нейтронной мощности осуществляется за счет температурных эффектов реактивности.

Знание физических основ ядерной энергетики и теплофизики, устройства корабля и АЭУ, опыт эксплуатации материальной части и борьбы за живучесть технических средств, хладнокровие, выдержка, высокие морально-волевые качества, преданность своему делу - вот основные качества подводника-атомщика. А вот в каких условиях ему приходится выполнять свои обязанности.



Если посмотреть на разрез энергетического отсека атомной подводной лодки, где всё заполнено техникой, в этом плотнейшем сплетении электрических кабелей, гидравлики и воздуховодов трудно представить себе человека, многие дни, недели и месяцы несущего службу в этих энергонапряжённых, пространственно стеснённых условиях. И, тем не менее, подводники исправно выполняют свою святую обязанность, защищая морские рубежи нашего Отечества.

Далекий северный город Северодвинск, расположенный в европейской части России, известен как колыбель атомного кораблестроения России. На предприятии "Севмаш", которое находится в материковой части города, за полвека было построено около 165 подводных лодок. Из них 128 - атомные.

Многие из этих подводных лодок здесь же, в Северодвинске, заканчивали свой век. На соседнем с "Севмашем" предприятии "Звездочка" были утилизированы 44 атомные подводные лодки. Операция по утилизации АПЛ и надводных кораблей с атомным сердцем - это отдельная, сложная с инженерной точки зрения операция.


Взят у kuleshovoleg в Об утилизации атомных кораблей - из первых уст

В стране не так много предприятий, которые способны проводить данные работы. О том, как она происходит, и для чего кораблям необходима эта процедура, мы попросили рассказать начальника отдела технологий ремонта корпусных конструкций и покрытий Научно-исследовательского проектно-технологическое бюро "Онега" (НИПТБ "Онега") Сергея Добровенко.

2.Сергей Добровенко / НИПТБ "Онега"

Сергей Вячеславович, расскажите нам о себе. Давно ли Вы связаны с кораблестроением? Чем занимаетесь в НИПТБ "Онега"?

С кораблестроением связан со времен Севмашвтуза (ныне - ИСМАРТ САФУ). Я там учился и одновременно работал по системе "завод-втуз" на судоремонтном предприятии "Звездочка" сборщиком корпусов металлических судов в цехе № 15. По окончании учебы, в 1996 году, устроился на работу в НИПТБ "Онега". Начинал с инженера-технолога. Сейчас занимаю должность начальника отдела технологий ремонта корпусных конструкций и покрытий.

Наш отдел разрабатывает технологии ремонта корпуса, корпусных конструкций и покрытий. Кроме того, одно из направлений деятельности НИПТБ "Онега" - разработка технологий утилизации атомных подводных лодок, надводных кораблей с ядерной энергетической установкой, а также судов атомного технического обеспечения. В основном, это работы, связанные с разрезкой корпусных конструкций и демонтажом систем и оборудования.

Мы занимаемся разработкой всевозможных технологий по разрезке корпусов, металлических конструкций, процессу демонтажа корпусных конструкций, формированию блоков реакторных отсеков.

3. Установленная как памятник рубка от атомной подводной лодки проекта 667АТ

- Вы упомянули о работе на "Звездочке". На каком заказе начинали работать? Так сказать - Ваш первый корабль

Если говорить о первом корабле, на котором работал, то это была "Груша", проект 667АТ. На ней я занимался ракетными нишами. А если говорить о разрезке, то первый корабль, в утилизации которого я принимал участие, это "азуха" - атомная подлодка проекта 667А.

4. Атомная подводная лодка К-222 (Проект 661 "Анчар") перед утилизацией / Центр судоремонта "Звёздочка"

- Давайте перейдем к главному вопросу. Что из себя представляет процесс утилизации?

Утилизация атомной подводной лодки и утилизация надводного корабля отличаются друг от друга, но суть, тем не менее, одна и та же. Для начала разрабатывается так называемый комплект проектно-организационной документации по утилизации корабля, в который входит определенный объем документов, необходимый и достаточный для приведения лодки в безопасное состояние и формирования реакторного отсека. Эти документы согласовываются с соответствующими надзорными органами и заинтересованными организациями.

Процесс утилизации начинается с вывода корабля из эксплуатации. Флот передает корабль промышленности. Разрабатывается комплект документов, согласовывается, утверждается, получает экспертные заключения надзорных органов, и только после этого начинается процедура физической утилизации. Корабль поступает на предприятие, которое будет проводить работы по утилизации. Становится к причальной стенке. В том случае, если на нем находится отработавшее ядерное топливо (ОЯТ), оно выгружается на береговых комплексах выгрузки ОЯТ. Реактор приводится в безопасное состояние.

5. Процесс утилизации атомной подводной лодки "Борисоглебск" (Проект 667БДР) / Центр судоремонта "Звёздочка"

После выгрузки ОЯТ начинается физическая разделка корабля. Частично конструкции демонтируются на плаву для того, чтобы разгрузить доковый вес заказа, а также ускорить процесс утилизации. После разгрузки корабль ставится на твердое основание: в плавдок, док-камеру или на стапель. После того, как корабль поставлен на доково-опорное устройство, начинается процесс демонтажа корпусных конструкций, систем и оборудования. ОЯТ выгружается, затем на спецэшелоне отправляется на предприятия-переработчики, такие как "Маяк". Радиоактивные отходы, образующиеся при этом, остаются на предприятии и подлежат переработке или временному хранению.

6. Процесс утилизации атомной подводной лодки "Борисоглебск" (Проект 667БДР)

Первым делом демонтируются корпусные конструкции, такие как надстройка корабля или рубка подводной лодки. Они крупными секциями выгружаются с заказа, затем разрезаются на транспортные секции, после чего перевозятся на участки разделки металлолома и оборудования, где данный габаритный лом отгружается на металлургические комбинаты.

7. Процесс утилизации атомной подводной лодки / Центр судоремонта "Звёздочка"

В процессе утилизации с корабля выгружается все оборудование, которое тоже разделывается на специализированных площадках, или его забирают себе на разделку специализированные предприятия. Металлолом разделяют по различным маркам и тоже сдают на предприятия-переработчики.

8. Метал, который остался от утилизации атомной субмарины, в дальнейшем уходит на переработку / Центр судоремонта "Звёздочка"

Также при утилизации образуется большое количество различных токсичных промышленных отходов: остатки лакокрасочных, резиновых и прочих покрытий, отделки судовых помещений и т.п., которые подлежат переработке или отправляются на захоронение на полигон.

9. Формирование трёхотсечного блока атомной подводной лодки К-222 (Проект 661 "Анчар") / Центр судоремонта "Звёздочка"

После того, как носовой и кормовой блоки АПЛ утилизированы и переработаны, начинается формирование реакторных блоков. На судостроительных предприятиях их формируют в трехотсечные блоки - реакторный отсек и два дополнительных отсека по бокам, так называемых поплавка, которые обеспечивают положительную плавучесть этого блока. После формирования блоки буксируют в пункты длительного хранения реакторных отсеков, где отсеки-поплавки отрезают и оставляют отсек с реактором на хранение.

10. Трёхотсечный блок атомной подводной лодки во время перевозки к пункту долговременного хранения реакторных отсеков / РОСАТОМ

11. Пункт долговременного хранения реакторных отсеков / РОСАТОМ

Вы рассказали про утилизацию подводных лодок. А как обстоят дела с утилизацией крупных надводных кораблей, таких как ССВ-33 "Урал", корпус которого до сих пор не утилизирован, но вся надстройка спилена. Какие-то сложности?

Работы по утилизации "Урала" до сих пор ведутся. Они идут медленно из-за отсутствия финансирования. Также длительное время разрабатывался проект по утилизации этого корабля, и долгое время решался вопрос по варианту формирования реакторного отсека.

Так как у таких кораблей массогабаритные характеристики значительно выше, чем у атомных подлодок, был принят такой вариант утилизации - демонтируются конструкции надстройки до верхней палубы, а затем из реакторного отсека выгружается реактор, который помещается в спецупаковку. В случае необходимости корабль разрезают на две части для того, чтобы можно было его поставить на твердое основание.

12. Большой атомный разведывательный корабль ССВ-33 "Урал" / Википедия.

- А когда начнется утилизация "Кирова"?

На сегодняшний день НИПТБ "Онега" разрабатывает комплект документов по его утилизации. Согласуем его, и далее, насколько я знаю, финансирование работ будет производиться на деньги Госкорпорации "Росатом". Насчет сроков неизвестно, это зависит от тендера, но, скорее всего, начало утилизации будет положено в следующем году.

13. Тяжелый атомный ракетный крейсер "Киров".

Весной на портале госзакупок появилась запись о проведении тендера на демонтаж крышек шахт с атомной подводной лодки ТК-17 "Архангельск" (проект 941). Сообщалось о начале работ в августе этого года. Началась ли какая работа в этом направлении?

Честно говоря, не обладаю такими сведениями. Но, наверное, начнут в ближайшее время. Если речь идет о демонтаже крышек, то это будет так называемая процедура по договору СНВ - демонтаж крышек и приведение в безопасное состояние пусковых установок. Считаю, что эта работа несложная, и будет сделана быстро.

14. Атомные подводные лодки проекта 941 в ожидании утилизации.

А как обстоят дела с утилизацией судов "Атомфлота" и судами технического обеспечения? Насколько это отличается от утилизации подлодок и кораблей? Слышал, что с "Лепсе" были определенные сложности.

Утилизация "Лепсе" - сложный проект. Мы разрабатывали комплект документов на него, я принимал непосредственное участие в разработке технологий по утилизации корпусных конструкций и формировании блок-упаковок, в которые будут закатаны наиболее радиационно-опасные блоки судна. Эти части встанут в упаковку, которую затем отправят в пункт длительного хранения реакторных отсеков в губе Сайда.

Сложности существуют всегда и везде, особенно на таких судах как "Лепсе", где находятся высокоактивные отходы, с которыми невозможно было что-то сделать, кроме как оставить их в части этого судна для дальнейшего длительного хранения.

(Лепсе - судно-заправщик атомного ледокольного флота России. Принадлежит ФГУП «Атомфлот». В 1988 году судно выведено из эксплуатации, а в 1990 году переведено в категорию стоечных судов. В пеналах и кессонах хранилища отработавшего ядерного топлива (ОЯТ) судна размещено 639 отработавших тепловыделяющих сборок (ОТВС), часть из которых повреждена. - Прим. ред.)

Вопросы безопасности были очень серьезные и тщательно прорабатывались, чтобы не допустить чрезвычайных ситуаций и переоблучения людей.

15. "Лепсе" - судно-заправщик атомного ледокольного флота России.

- Какой заказ в Вашей работе был особенно сложен?

Много сложных кораблей было в практике. Сложности были с "Курском". Мы разрабатывали на него проект документов. С "Лепсе" сложности были только из-за его состояния. Также "Золотая рыбка" (АПЛ проекта 661 "Анчар") была сложная - титановый корабль в аварийном состоянии.

Но самыми сложными были атомные подводные лодки, находившиеся на Дальнем Востоке, так называемые "чажемские". Две аварийные подлодки проекта 675 зав. № 175 и проекта 671 зав. № 610 с повышенным радиационным фоном. Они много лет стояли в отстое в бухте Павловского, а затем их утилизировали в док-камере ДВЗ "Звезда". Для их утилизации в доке сделали специальные поддоны под все основание, чтобы не разнести загрязненные элементы. На этих кораблях были очень высокие активности, что представляло большую сложность.

Разрабатывали документы так, чтобы демонтаж конструкций, систем и оборудования выполнялся с наименьшим вредом для человека, так как внутри могли находиться остатки жидких радиоактивных отходов.

- Как вы относитесь к масштабной утилизации подлодок первого и второго поколения в 90-х и 2000-х годах?

Надо понимать, что все эти корабли выработали свой ресурс, особенно первое и второе поколение. Поменялась геополитика и задачи государства, да и новая техника получает свое развитие. А те корабли выработали себя полностью, и продолжать их эксплуатацию было совсем нецелесообразно, многие из них находились в аварийном состоянии. Я считаю, что правильнее наращивать новые группировки более современных кораблей, а не поддерживать устаревшие морально. Кроме того, существовала угроза экологической безопасности. Они приходили в такое состояние, что герметичность легкого корпуса практически совсем отсутствовала. Также была угроза их затопления, что повлекло бы еще больше проблем.

Своевременная утилизация необходима - это рационально. Все должно вовремя строиться и вовремя утилизироваться. Если у вас есть машина, вы же не будете сто лет ездить на ней и постоянно ее ремонтировать - больше проблем будет, чем удовольствия от ее вождения.

У Вас есть информация по подъему затопленных в морях подлодок и реакторов? Последнее время в СМИ часто мелькает информация по их подъему и утилизации, а до действий так и не доходит.

На сегодняшний день пока это только разговоры. Подъем этих лодок - очень дорогостоящее занятие. Некоторые из них лежат на больших глубинах. В свое время поднимали "Курск", он лежал на небольшой глубине, а тот же "Комсомолец" лежит на глубине около полутора тысяч метров, подъем его на поверхность - большая проблема.

Разговоры о подъеме этих лодок часто звучат на различных конференциях и совещаниях, но пока я не слышал о реальных перспективах подъема затонувших атомных подводных лодок.

- От лодок к семье. Есть ли у Вас дети? Если да, то по Вашим стопам пошли?

Мой сын сейчас окончил школу и поступил в Архангельский медицинский университет. С первого сентября начнет там обучение. Не по моим стопам пошел.

- А есть ли у Вас любимая подлодка? За красоту, какое-либо качество или за что-то другое?

Мне очень нравятся "Акулы", 941-й проект. Кроме нас, такой мощный и большой корабль никто не мог построить. В современных условиях они, может быть, и не нужны, но это - шедевр.

Жми на кнопку, чтобы подписаться на "Как это сделано"!

Если у вас есть производство или сервис, о котором вы хотите рассказать нашим читателям, пишите Аслану ([email protected] ) и мы сделаем самый лучший репортаж, который увидят не только читатели сообщества, но и сайта Как это сделано

Подписывайтесь также на наши группы в фейсбуке, вконтакте, одноклассниках и в гугл+плюс , где будут выкладываться самое интересное из сообщества, плюс материалы, которых нет здесь и видео о том, как устроены вещи в нашем мире.

Жми на иконку и подписывайся!

На заре подводного судостроения, когда шел поиск оптимальных двигателей для субмарин, конструкторы экспериментировали, в том числе, с паросиловыми установками.

После того как в 1930-х годах дизель-электрические подлодки уже перешагнули 20-узловой рубеж, казалось, эра «паровых» субмарин завершилась навсегда. Но прошло всего полтора десятилетия, и о них вновь вспомнили. Разница состояла лишь в том, что пар для турбины должен вырабатывать не привычный котел, сжигающий органическое топливо, а котел атомный.

ФИЗИЧЕСКИЕ ПРИНЦИПЫ РАБОТЫ

В основе работы ядерной энергетической установки лежит управляемая цепная ядерная реакция. Эта реакция представляет собой самоподдерживающийся процесс деления ядер изотопов урана (или делящихся изотопов других элементов) под действием элементарных частиц — нейтронов, которые благодаря отсутствию электрического заряда легко проникают в атомные ядра. При делении ядер образуются новые, более легкие ядра — осколки деления, испускаются нейтроны и освобождается большое количество энергии. Так, деление каждого ядра урана-235 сопровождается освобождением приблизительно 200 мегаэлектроновольт энергии. Из них примерно 83 % приходится на долю кинетической энергии осколков деления, которая в результате торможения осколков преобразуется в основном в тепловую энергию. Остальные 17 % ядерной энергии освобождаются в виде энергии свободных нейтронов и различных видов радиоактивного излучения. Вновь образованные нейтроны в свою очередь участвуют в делении других ядер.

ПЕРВЫЕ ШАГИ

Проработка вопросов создания ядерных силовых установок для подводных лодок началась в США в 1944 году, а уже через четыре года первая из них была спроектирована. Там же в июне 1952 года состоялась закладка первой атомной подводной лодки, получившей имя «Наутилус». На первый взгляд она была само воплощение человеческой мечты об истинной подводной лодке. Действительно, где, как только не в мечтах, можно было себе представить подводный корабль длиной почти 100 м способный более месяца, не всплывая, ходить скоростью более 20 узлов. Но, как это часто бывает, ощутимый качественный скачок в одной области технического прогресса повлек за собой целый букет сопутствующих проблем в смежных. Применительно к атомным силовым установкам — это прежде всего вопросы, связанные с ядерной безопасностью их эксплуатации и последующей утилизацией. Но в начале 1950-х годов об этом просто никто не задумывался.

ОБЩАЯ КОНСТРУКЦИЯ

Основной элемент ядерных энергетических установок — ядерный реактор — специальное устройство, в котором происходит управляемая цепная ядерная реакция. В его состав входят активная зона, отражатель нейтронов, стержни управления и защиты, биологическая защита реактора. Активная зона реактора содержит в себе ядерное горючее и замедлитель нейтронов. В ней протекает управляемая реакция цепного деления ядерного горючего. Ядерное топливо размещается внутри так называемых тепловыделяющих элементов (ТВЭЛ), которые имеют форму цилиндров, стержней, пластин или трубчатых конструкций. Эти элементы образуют решетку, свободное пространство которой заполняется замедлителем. Основными материалами для оболочек тепловыделяющих элементов служат алюминий и цирконий. Нержавеющая сталь применяется в ограниченных количествах и только в реакторах на обогащенном уране, так как сильно поглощает тепловые нейтроны. Для отвода тепла через активную зону прокачивается жидкий теплоноситель.

В энергетических реакторах водо-водяного типа как замедлителем, так и теплоносителем систем является бидистиллят (дважды дистиллированная вода).

Чтобы сделать цепную реакцию возможной, размеры активной зоны реактора должны быть не меньше так называемых критических размеров, при которых эффективный коэффициент размножения равен единице. Критические размеры активной зоны зависят от изотопного состава делящегося вещества (уменьшаются с увеличением обогащения ядерного топлива ураном-235), от количества материалов, поглощающих нейтроны, вида и количества замедлителя, формы активной зоны и т. д. На практике размеры активной зоны назначаются больше критических, чтобы реактор располагал необходимым для нормальной работы запасом реактивности, который постоянно уменьшается и к концу кампании реактора становится равным нулю. Отражатель нейтронов, окружающий активную зону, должен сокращать утечку нейтронов. Он уменьшает критические размеры активной зоны, повышает равномерность нейтронного потока, увеличивает удельную мощность реактора, следовательно, уменьшает размеры реактора и обеспечивает экономию делящихся материалов. Обычно отражатель выполняется из графита, тяжелой воды или бериллия. Стержни управления и защиты содержат в себе материалы, интенсивно поглощающие нейтроны (например, бор, кадмий, гафний). К стержням управления и защиты относятся компенсирующие, регулирующие и аварийные стержни.

ОСНОВНЫЕ РАЗНОВИДНОСТИ

«Наутилус» имел силовую установку с водо-водяным реактором под давлением. Такие реакторы применены и на подавляющем большинстве других атомных субмарин.

В современных атомных установках ядерная энергия превращается в механическую только посредством тепловых циклов. Во всех механических установках атомных подводных лодок рабочим телом цикла является пар. Паровой цикл с промежуточным теплоносителем, передающим теплоту из активной зоны рабочему телу в парогенераторах, приводит к двухконтурной тепловой схеме энергетической установки. Такая тепловая схема с водо-водяным реактором получила самое широкое распространение на атомных подводных лодках. Первому контуру необходима защита, так как при прокачке теплоносителя через активную зону реактора содержащийся в воде кислород становится радиоактивным. Весь второй контур нерадиоактивен.

Для того чтобы получить во втором контуре пар заданных параметров, вода первого контура должна иметь достаточно высокую температуру, превышающую таковую производимого пара. Для исключения вскипания воды в первом контуре в нем необходимо поддерживать соответствующее избыточное давление, обеспечивающее так называемый «недогрев до кипения». Так, в первом контуре зарубежных корабельных ядерных силовых установок поддерживается давление 140-180 атмосфер, которое позволяет нагревать воду контура до 250-280° С. При этом во втором контуре генерируется насыщенный пар давлением 15-20 атмосфер при температуре 200-250° С. На советских подводных лодках первого поколения температура воды в первом контуре составляла 200° С, а параметры пара — 36 атмосфер и 335° С.

С ЖИДКОМЕТАЛЛИЧЕСКИМ ТЕПЛОНОСИТЕЛЕМ

В 1957 году в состав ВМС США вошла вторая атомная подводная лодка «Сивулф». Ее принципиальное отличие от «Наутилуса» заключалось в ядерной силовой установке, где применялся реактор с натрием в качестве теплоносителя. Теоретически это должно было снизить удельную массу установки за счет снижения веса биологической защиты, а главное — повышения параметров пара. Температура плавления натрия, составляющая всего 98° С, и высокая температура кипения — более 800° С, а также отличная теплопроводность, в которой натрий уступает только серебру, меди, золоту и алюминию, делает его очень привлекательным для использования в качестве теплоносителя. Нагревая жидкий натрий в реакторе до высокой температуры, при относительно небольшом давлении в первом контуре — порядка 6 атмосфер, во втором контуре получали пар давлением 40-48 атмосфер с температурой перегрева 410-420°С.

Практика показала, что, несмотря на все преимущества, ядерный реактор с жидкометаллическим теплоносителем обладает рядом существенных недостатков. Чтобы сохранить натрий в расплавленном состоянии, в том числе и в период бездействия установки, на корабле необходимо иметь специальную постоянно действующую систему подогрева жидкометаллического теплоносителя и обеспечения его циркуляции. В противном случае натрий и сплав промежуточного контура «замерзнут» и энергетическая установка будет выведена из строя. В ходе эксплуатации «Сивулфа» обнаружилось, что жидкий натрий химически чрезмерно агрессивен, в результате чего трубопроводы первого контура и парогенератор быстро коррозировали, вплоть до появления свищей. А это очень опасно, так как натрий или его сплав с калием бурно реагируют с водой вплоть до теплового взрыва. Утечка радиоактивного натрия из контура вынудила сначала отключить пароперегревательные секции парогенератора, что привело к снижению мощности установки до 80 %, а потом, через год с небольшим после вступления в строй, и вообще вывести корабль из состава флота. Опыт «Сивулфа» заставил американских военных моряков окончательно сделать выбор в пользу водо-водяных реакторов. А вот в СССР эксперименты с жидкометаллическим теплоносителем продолжались гораздо дольше. Вместо натрия применялся сплав свинца с висмутом — гораздо менее пожаро- и взрывоопасный. В 1963 году вступает в строй подлодка проекта 645 с таким реактором (по сути — модификация первых советских атомных субмарин проекта 627, на которых применялись водо-водяные реакторы).

А в 1970-е годы состав флота пополнили семь подлодок проекта 705 с ядерной силовой установкой на жидкометаллическим носителе и титановым корпусом. Эти субмарины обладали уникальными характеристиками — они могли развивать скорость до 41 узла и погружаться на глубину 700 м. Но эксплуатация их была чрезвычайно дорогой, из-за чего лодки этого проекта прозвали «золотыми рыбками». В дальнейшем ни в СССР, ни в других странах реакторы с жидкометаллическим теплоносителем не применялись, а повсеместно принятыми стали водо-водяные реакторы.

Во второй половине 80-х годов XX века начался интенсивный процесс снятия с эксплуатации и вывода из состава ВМФ России атомных подводных лодок (АПЛ). Это было связано как с истечением сроков службы, так и с выполнением Российской Федерацией международных обязательств по сокращению вооружений. Основные результаты работ по утилизации трех поколений АПЛ представлены в таблице.

В настоящее время период активной утилизации АПЛ, когда ежегодно утилизировалось с формированием одно - или трехотсечных блоков более 10 АПЛ в год, закончился. АПЛ 1-го поколения практически полностью утилизированы (за исключением аварийных АПЛ). Второе поколение также в основном выведено из эксплуатации и утилизировано по принятой схеме. В течение последующих нескольких лет будет происходить вывод из эксплуатации и утилизация 2 – 5 АПЛ 2-го и 3-го поколений в год.

В настоящее время для решения проблем хранения реакторных отсеков (РО), обращения с радиоактивными отходами (РАО), образующимися при утилизации, необходимо создание дополнительной инфраструктуры, включающей строительство пунктов долговременного хранения реакторных отсеков (ПДХ), региональных центров по кондиционированию и хранению РАО, причальных стенок, реконструкция железнодорожных коммуникаций и т.д. Все это требует привлечения значительных финансовых и трудовых ресурсов. Масштаб решаемых задач иллюстрирует рис.1, на котором показана одна из площадок долговременного хранения реакторных отсеков утилизированных АПЛ.

Общая сумма затрат на строительство наземного хранилища на 120 РО в Сайда-губе превышает 300 млн. евро.

Рисунок 1. Площадка долговременного хранения реакторных отсеков.

Предполагается, что РО в ПДХ должны храниться в течение 75-100 лет, после чего должен быть окончательно решен вопрос об их утилизации. Учитывая, что массы РО АПЛ относительно не велики (около 1000 тонн), а ПДХ расположены далеко от сталеплавильных предприятий, их окончательная утилизация (окончательная разделка и переплавка стали) экономически сомнительна.
При решении вопроса об окончательной утилизации следует также учитывать, что в РО загружаются твердые радиоактивные отходы, образующиеся при утилизации АПЛ.

Значительная часть ядерных энергетических установок (ЯЭУ) выводимых из эксплуатации АПЛ 2-го и 3-го поколений не выработали назначенные ресурсные показатели и в основном находятся в хорошем состоянии.
В настоящее время в России развертывается программа строительства плавучих атомных электростанций малой мощности. Энергоблоки плавучих АЭС планируется создавать на базе судовых реакторных установок типа КЛТ-40 (прототипом являлся реактор ОК-900), хорошо зарекомендовавших себя при эксплуатации на атомных судах. Так, например, ЯЭУ атомного ледокола «Арктика» (реактор ОК-900) успешно эксплуатировалась с 1975 по 3 октября 2008 годы; за 176384 часа эксплуатации при средней мощности 63,1 МВт энерговыработка составила 11132456 МВт*часов. Следует отметить, что реакторная установка ледокола имела проектный ресурс 90000 часов при работе на номинальной мощности 170 МВт, и, следовательно, энерговыработка реактора могла бы составить 15,5 млн. МВт*часов.

ЯЭУ АПЛ принципиально ничем не отличаются от ледокольных установок. По существу, технология лодочных реакторов с водой под давлением создала основу и для атомных станций с корпусными реакторами.
«Мы всегда стремились создать атомные энергетические установки двойного назначения, ибо создание военной и гражданской техники на основе единой технологии очень эффективно для совершенствования и той и другой» – так считает академик Н.С. Хлопкин. Именно в ЯЭУ АПЛ были использованы технические решения, которые сегодня стали обязательными для большой атомной энергетики: активные зоны обладали обратными отрицательными связями по температурам топлива и замедлителя, а сами ЯЭУ имели защитное ограждение в виде прочного корпуса РО.

Эксперты из РНЦ «Курчатовский институт» при разработке концепции строительства подземных АЭС еще в 1993 году отмечали, что «благодаря малым габаритам и массе можно использовать корабельные решения по энергетическим установкам и в подземных атомных электростанциях. Комплексная автоматизация, герметичное исполнение оборудования, сведение к минимуму жидких и газообразных отходов, отработанность технологии и высокое качество изготовления благодаря выполнению большей части монтажных работ на машиностроительных заводах - все эти свойства очень хорошо вписываются в концепцию подземной АЭС».

Корпуса реакторов относятся к оборудованию с длительным циклом производства и являются наиболее дорогостоящими частями ЯЭУ. Единственным предприятием, которое в настоящее время производит подобное оборудование, являются «Ижорские заводы». Технологический цикл изготовление корпуса реактора в зависимости от типа реактора составляет 2-3 года. Учитывая не беспредельные производственные возможности «Ижорского завода», по мнению авторов не целесообразно загружать его дополнительными заказами для плавучих АЭС.
Также следует учитывать, что стоимость изготовления реакторов для плавучей АЭС составляет по разным оценкам от 40 до 60 % общей стоимости станции. Таким образом, при строительстве плавучих АЭС представляется экономически целесообразным использовать готовые РО выводимых из эксплуатации АПЛ.

Для данных целей в полной мере подходят эксплуатируемые или находящиеся на этапах вывода из эксплуатации и временного хранения на плаву АПЛ 2-го - 3-го поколений (общее количество таких АПЛ составляет примерно 140 единиц ). Использование уже сформированных в процессе утилизации АПЛ 1-3 отсечных РО подлежит отдельному рассмотрению в каждом конкретном случае.
ЯЭУ гражданского и военного назначения имеют незначительные конструктивные различия. Предполагаемые к утилизации АПЛ 2-го поколения имеют по 2 реактора тепловой мощностью 90 МВт, АПЛ 3-го поколения − по 1-2 реактора тепловой мощностью 180 МВт.

В докладе будет рассмотрена одна из составляющих, оказывающая существенное влияние на безопасность использования ЯЭУ утилизируемых АПЛ – охрупчивание корпусной стали реактора под воздействием потока быстрых нейтронов. Материал корпусов реакторов гражданского и военного назначения одинаков – сталь типа 15Х2МФАА.

Работа ЯЭУ на парциальных нагрузках существенно уменьшает выработку ресурса корпуса реактора, который определяется сдвигом критической температуры хрупкости материала корпуса, обусловленной, главным образом, флюенсом быстрых нейтронов. Исследования основного металла и металла сварных швов корпусов реакторов атомного ледокола «Ленин», выполненные после снятия его с эксплуатации при выработке ресурса 106700 часов, подтвердили возможность продления проектного часового ресурса корпусов реакторов, работавших на мощностях меньше номинальной.

Для исследования возможности применения ЯЭУ утилизируемых АПЛ авторами была проведена оценка охрупчивания корпусов реакторов АПЛ с использованием стандартных методик и эксплуатационных параметров, достигнутых реакторами ледокола «Арктика».
Критическая температура хрупкости материала корпуса реактора (Тк) является фактором, ограничивающим срок его службы, и определяется суммой

ТК = ТК0 + ΔТТ + ΔТN + ΔТF, (1)

где ТК0 – критическая температура хрупкости материала в исходном состоянии,
ΔТТ – сдвиг критической температуры хрупкости вследствие температурного старения;
ΔТN – сдвиг критической температуры хрупкости вследствие циклической повреждаемости (для судовых ЯЭУ ΔТN не является определяющим фактором, и может быть принят равным нулю);
ΔТF – сдвиг критической температуры хрупкости вследствие нейтронного облучения.

Используя стандартные зависимости, рассчитаем величину флюенса быстрых нейтронов Fn на корпусе реактора ледокола «Арктика»:

Fn = F0*(ТF/AF)3 = 1018*(110/23)3 = 1,1 1020 см - 2 , (2)

где AF – коэффициент охрупчивания нижнего сварного шва;
F0 = 1018 см - 2 – пороговое значение флюенса;
ТF = 110 0С – сдвиг критической температуры вязко-хрупкого перехода в результате облучения.

В этом случае средняя плотность потока быстрых нейтронов на корпусе реактора за время эксплуатации τ составит

φб = Fn/τ = 1,1 1020/176384 3600 = 1,73 1011см – 2c – 1, (3)

и, следовательно, время работы реактора на средней за время эксплуатации мощности составляет

τ = Fn/φб 3600 = 1,1 1020/1,73 1011 3600 = 176622 часа. (4)

Полученный результат хорошо согласуется с зарегистрированным временем работы реактора ледокола «Арктика», что означает – сдвиг критической температуры вязко-хрупкого перехода был принят правильно. Опираясь на эти данные и учитывая, что плотности потоков быстрых нейтронов в реакторах ледоколов и АПЛ примерно одинаковы, можно предположить, что реакторы утилизируемых АПЛ способны достигать энерговыработки 11 – 12 миллионов МВт*часов и больше.

ЯЭУ утилизируемых АПЛ, по мнению специалистов, далеки от выработки ресурсных показателей. Специфика эксплуатации АПЛ заключается в том, что доля режимов работы ЯЭУ на нагрузках, близких к максимальным, невелика. Кроме этого, начиная с 90-х годов ХХ столетия, АПЛ не так часто выходили в море.
Учитывая, что номинальная мощность реакторов АПЛ 2-го поколения составляет 90 МВт, средняя мощность за время эксплуатации большинства из них не превышала 30%, т.е. 27 МВт, а время работы на мощности составляло около 40000 часов, получим энерговыработку порядка 1,08 млн. МВт*часов.

Считая плотности потоков нейтронов в реакторах ледоколов и АПЛ близкими по значению, и также полагая, что значения плотностей нейтронных потоков пропорциональны мощности реакторов, а, следовательно, флюенс быстрых нейтронов на корпус реактора пропорционален его энерговыработке, имеем значение флюенса при энерговыработке 1,08 млн. МВт*часов Fn = 1,07∙1019 см – 2. При этом сдвиг критической температуры вязко-хрупкого перехода для материала корпусов реакторов АПЛ составит

ТF = Aw*(Fn/F0)1/3 = 23*(1,07∙1019/1018)1/3 ≈ 49,5 0С. (5)

Следовательно, остаточный ресурс корпуса реактора АПЛ по флюенсу быстрых нейтронов на корпусе составляет 10 - 11 миллионов МВт*часов, а возможно, и более.

Расчет флюенса быстрых нейтронов на корпусе реактора сопряжен с определенными трудностями:
− в конце кампании активной зоны происходит увеличение плотности потока нейтронов;
− нет точной информации о плотности потока нейтронов в реакторе (особенно быстрых нейтронов);
− за время эксплуатации реактора в нем «сжигается» несколько активных зон, что приводит к накоплению ошибки в определении флюенса;
− в судовые реакторы не загружаются образцы-свидетели, позволяющие судить об изменении физико-механических свойств корпусной стали.

Точнее чем флюенс быстрых нейтронов, в результате эксплуатации определяется энерговыработка реактора. Поэтому значительный интерес представляет зависимость сдвига критической температуры в результате нейтронного облучения от энерговыработки реактора. Очевидно, что эта зависимость будет иметь такой же вид

ТF = Aw*(W/W0)1/3, (6)

где Aw – коэффициент охрупчивания, обусловленный энерговыработкой,
W – достигнутая энерговыработка,
W0 – пороговая энерговыработка.

Данная зависимость справедлива в диапазоне изменения энерговыработки от 1*106 МВт*час до 3*107 МВт*час. Так как ректоры всех судовых ЯЭУ изготавливаются по одинаковой технологии из стали 15Х2МФАА и имеют примерно одинаковую толщину железо-водной защиты корпуса, то при проведении расчета принималось, что Aw = 49,5.

Полученная зависимость позволяет прогнозировать сдвиг критической температуры хрупкости в результате нейтронного облучения материала корпусов судовых реакторов от энерговыработки (рис. 2). Анализ кривой показывает, что судовые реакторы способны достигать энерговыработки 15,5*106 МВт*часов, при этом сдвиг критической температуры хрупкости не превысит 125 0 С.

Рисунок 2. Прогноз сдвига критической температуры хрупкости от нейтронного облучения для судовых реакторов.

Таким образом, остаточный ресурс ЯЭУ 2-го поколения может достигать максимальной величины 14,4 106 МВт*часов (реально около 10*106 МВт*часов). Отсюда следует, что при использовании ЯЭУ утилизируемых АПЛ 2-го поколения в составе энергомодулей плавучих АЭС, работающих с КИУМ (коэффициент использования установленной мощности) = 0,7, они смогут работать около 25 лет до утилизации.

Если считать, что для АПЛ 3-го поколения средний уровень мощности составляет как на АПЛ 2-го поколения приблизительно 30 % или 54 МВт, а время работы на этой мощности около 30000 часов, то получим энерговыработку 1,62*106 МВт*часов. Тогда остаточный ресурс корпусов этих реакторов по энерговыработке составит около 13,9*106 МВт*часов. При работе на плавучих АЭС с КИУМ = 0,7 возможное время эксплуатации этих реакторов составит примерно 110 тысяч часов или примерно12,5 лет.

Таким образом, основной фактор, определяющий ресурс работы материала корпуса реактора – сдвиг критической температуры хрупкости в результате нейтронного облучения реакторов АПЛ, не является основанием для отказа от использования реакторных установок утилизированных АПЛ в качестве энергетических модулей для плавучих АЭС.
Примерная методология решения этого вопроса может быть представлена схемой на рисунке 3.

Рис. 3. Методологическая схема решения вопроса об использовании ЯЭУ АПЛ в качестве энергетического модуля на плавучей АЭС.

Кроме того, высокая надежность и живучесть ЯЭУ подтверждена как многолетним опытом эксплуатации, так и имевшей место гибелью подводных лодок. Реакторы всех затонувших АПЛ были надежно заглушены, при этом ни разу не было зарегистрировано радиационного загрязнения акватории. Последним примером тому служит катастрофа АПЛ «Курск» (август 2000г.).

По достижении предельной энерговыработки характеристики ударной вязкости металла корпусов реакторов могут быть восстановлены путем сухого низкотемпературного отжига, технология которого разработана и используется в нашей стране уже многие годы. C 1987 по 1992 годы был выполнен восстановительный отжиг 12 корпусов реакторов ВВЭР-440 в России, Германии, Болгарии и Чехословакии. При одном из первых отжигов на материале сварного шва, облученном до флюенса 1020 см-2 была исследована зависимость восстановления критической температуры (Тк) от температуры отжига при времени отжига 150 часов. В ходе экспериментов было установлено, что практически во всех случаях ударная вязкость восстанавливалась до значений, соответствующих необлученному материалу, и максимальное восстановление свойств облученной корпусной стали 15Х2МФАА при температуре отжига 460 – 4700С происходит за время, равное 170 часам.

Планируемый ресурс реакторов КЛТ-40С, которые планируется устанавливать на плавучих АЭС, составляет 40 лет, причем один раз в 10 лет станции должны буксироваться на судостроительные предприятия для ремонта. Если на плавучей АЭС будут применены РО утилизированных АПЛ, то во время планового ремонта может быть выполнен отжиг корпусов реакторов, в результате чего временной ресурс будет удвоен и практически совпадет с ресурсом вновь построенных корпусов реакторов КЛТ-40С.

Отдельный вопрос – это возможность использования паротурбинной установки (ПТУ) утилизируемой АПЛ. Тепловая схема ПТУ АПЛ отличается от проектируемых на плавучей АЭС отсутствием термического деаэратора питательной воды (установка которого не представляет затруднений) и большей частотой вращения главной турбины. Вопрос о варианте использования главной турбины может решаться двояко. Во-первых, уменьшение частоты вращения главной турбины до 3000 оборотов в минуту несколько снизит ее мощность, но позволит ей работать совместно с турбогенератором, вырабатывающим ток частотой 50 Герц. Избыток пара при этом можно использовать для передачи на берег тепловой энергии через промежуточный теплообменник.

Во-вторых, использование главной турбины во всем диапазоне частот вращения потребует применения статических преобразователей частоты для выдачи в сеть электроэнергии требуемого качества. В обоих вариантах использования главной турбины можно отказаться от использования вспомогательных турбогенераторов, заменив их трансформаторами собственных нужд плавучих АЭС. Вспомогательные турбогенераторы заменяются дизельгенераторами, мощность которых обеспечивает расхолаживание обеих установок и ввод в работу одной из ЯЭУ. Это позволит использовать излишки пара для выработки тепловой энергии. Кроме того, при использовании ЯЭУ АПЛ на плавучем энергоблоке не будет необходимости в применении паровых холодильных машин, в результате чего образуются излишки пара, который можно использовать как в деаэраторе, так и для выработки тепловой энергии с передачей ее на берег. Таким образом, оборудование ПТУ утилизируемых АПЛ также может быть использовано в составе энергетического модуля на плавучих АЭС.

Утилизируемые атомные подводные лодки 2-го и 3-го поколений имеют широкий диапазон мощностей реакторов от 70 до 190 МВт и главных турбин от 15 до 37 МВт. Это позволяет подобрать для использования на плавучих АЭС требуемые мощности главного энергетического оборудования.

Стоимость строительства плавучей АЭС «под ключ» оценивается более чем в $150 миллионов , при этом она, приблизительно на 80% определяется стоимостью ЯЭУ и ПТУ . Использование ЯЭУ утилизируемых АПЛ позволит заметно уменьшить эту стоимость.

Масса РО двух реакторной установки утилизируемых АПЛ 2-го поколения составляет около 1200 тонн, а 3-го – около 1600 тонн. Это позволяет использовать реакторные и турбинные отсеки в качестве единого энергетического модуля, монтируемого на плавучей АЭС. В этом случае мы получим ранее построенную и оплаченную ЯЭУ в защитной оболочке, функцию которой выполняет прочный корпус АПЛ. Один из возможных вариантов такой конструкции плавучей АЭС показан на рис. 4.

Рисунок 4. Вариант размещения энергетического модуля (реакторного отсека АПЛ) на плавучих АЭС.

Использование предлагаемой технологии неизбежно столкнется с рядом проблем, которые необходимо решать уже в ближайшее время. К таким проблемам можно отнести:
− отсутствие процедуры перевода ЯЭУ военного назначения в ЯЭУ мирного использования атомной энергии;
− отсутствие анализа соответствия ЯЭУ АПЛ 2-3 поколений требованиям нормативных документов Ростехнадзора и Минздравсоцразвития по плавучим АЭС;
− необходимость обоснования остаточного ресурса, а также возможность продления назначенных ресурсных показателей основного оборудования ЯЭУ по каждой выведенной из эксплуатации АПЛ;
− необходимость изменения конструкции строящихся или проектируемых плавучих АЭС.

Для решения указанных проблем необходимо проведение значительного комплекса НИОКР.
Также следует отметить, что использование РО утилизируемых АПЛ не исчерпывается их применением для плавучих АЭС. Возможными вариантами применения может быть их использование при строительстве подземных АЭС.

Выводы:
1. Предлагаемая инновационная технология использования ЯЭУ утилизируемых АПЛ позволит:
− значительно сократить затраты на строительство плавучих АЭС и сократить время их строительства и окупаемости;
− снизить затраты на утилизацию АПЛ;
− значительно уменьшить количество радиоактивных отходов и затраты на обращение с ними;
− в полной мере использовать потенциал ЯЭУ АПЛ:
− в процессе эксплуатации ЯЭУ утилизируемых АПЛ в составе плавучей АЭС осуществить финансирование будущей утилизации РО.
2. Для внедрения указанной технологии необходимо уже в ближайшее время развернуть комплекс НИОКР, позволяющий научно обосновать техническую возможность использования РО утилизируемых АПЛ для проектируемых плавучих АЭС.