Технология получения железа в древности. Железная руда

Железная руда стала добываться человеком много веков назад. Уже тогда стали очевидными преимущества использования железа.

Найти минеральные образования, содержащие железо, довольно легко, так как этот элемент составляет около пяти процентов земной коры. В целом, железо является четвертым по распространенности элементом в природе.

В чистом виде найти его невозможно, железо содержится в определенном количестве во многих типах горных пород. Наибольшее содержание железа имеет железная руда, добыча металла из которой является наиболее экономично выгодным. От ее происхождения зависит количество содержащегося в ней железа, нормальная доля которого в составе около 15%.

Химический состав

Свойства железной руды, ее ценность и характеристики напрямую зависят от ее химического состава. Железная руда может содержать различное количество железа и других примесей. В зависимости от этого выделяют ее несколько типов:

  • очень богатые, когда содержание железа в рудах превышает 65%;
  • богатые, процент железа в которой варьируется в диапазоне от 60% до 65%;
  • средние, от 45% и выше;
  • бедные, в которых процент полезных элементов не превышает 45%.

Чем больше побочных примесей в составе железной руды, тем больше необходимо энергии на ее переработку, и тем менее эффективным является производство готовой продукции.

Состав породы может представлять собой совокупность различных минералов, пустой породы и других побочных примесей, соотношение которых зависит от ее месторождения.

Магнитные руды отличаются тем, что в их основе заложен оксид, имеющий магнитные свойства, но при сильном нагреве они теряются. Количество этого типа породы в природе ограничено, но содержание железа в нем может не уступать красному железняку. Внешне он выглядит как твердые кристаллы черно-синего цвета.

Шпатовый железняк представляет собой рудную породу, в основе которой лежит сидерит. Очень часто имеет в составе значительное количество глины. Этот тип породы относительно тяжело найти в природе, что на фоне малого количества содержимого железа делает его редко используемым. Поэтому отнести их к промышленным типам руд невозможно.

Кроме оксидов в природе содержаться другие руды на основе силикатов и карбонатов. Количество содержимого железа в породе очень важно для ее промышленного использования, но также важно наличие полезных побочных элементов, таких как никель, магний, и молибден.

Отрасли применения

Сфера применения железной руды практически полностью ограничена металлургией. Ее используют, в основном, для выплавки чугуна, который добывают с помощью мартеновских или конверторных печей. На сегодняшний день чугун используется в различных сферах жизнедеятельности человека, в том числе в большинстве видов промышленного производства.

Не в меньшей степени используются различные сплавы на основе железа – наиболее широкое применение обрела сталь благодаря своим прочностным и антикоррозийным свойствам.

Чугун, сталь и различные другие сплавы железа используются в:

  1. Машиностроении, для производства различных станков и аппаратов.
  2. Автомобилестроении, для изготовления двигателей, корпусов, рам, а также других узлов и деталей.
  3. Военной и ракетной промышленности, при производстве спецтехники, оружия и ракет.
  4. Строительстве, в качестве армирующего элемента или возведения несущих конструкций.
  5. Легкой и пищевой промышлености, в качестве тары, производственных линий, различных агрегатов и аппаратов.
  6. Добывающей промышленности, в качестве спецтехники и оборудования.

Месторождения железной руды

Мировые запасы железной руды ограничены в количестве и своем местоположении. Территории скопления запасов руд называют месторождениями. На сегодняшний день месторождения железных руд делят на:

  1. Эндогенные. Они характеризуются особым расположением в земной коре, обычно в виде титаномагнетитовых руд. Формы и расположения таких вкраплений разнообразны, могут быть в форме линз, пластов, расположенных в земной коре в виде залежей, вулканообразовных залежей, в виде различных жил и других неправильных форм.
  2. Экзогенные. К этому типу относятся залежи бурых железняков и других осадочных пород.
  3. Метаморфогенные. К которым относятся залежи кварцитов.

Месторождения таких руд можно встретить на территории всей нашей планеты. Наибольшее количество залежей сконцентрировано на территории постсоветских республик. В особенности Украины, России и Казахстана.

Большие запасы железа имеют такие страны как Бразилия, Канада, Австралия, США, Индия и ЮАР. При этом практически в каждой стране на земном шаре имеются свои разрабатываемыми месторождения, в случае дефицита которых, порода импортируется из других стран.

Обогащения железных руд

Как было указано, существует несколько типов руд. Богатые можно перерабатывать непосредственно после извлечения из земной коры, другие необходимо обогатить. Кроме процесса обогащения, переработка руды включает в себя несколько этапов, таких как сортировка, дробление, сепарация и агломерация.

На сегодняшний день существует несколько основных способов обогащения:

  1. Промывка.

Применяется для очистки руд от побочных примесей в виде глины или песка, вымывание которых проводят с помощью струй воды под высоким давлением. Такая операция позволяет увеличить количество содержимого железа в бедной руде примерно на 5%. Поэтому его используют только в комплексе с другими типами обогащения.

  1. Гравитационная очистка.

Выполняется с помощью специальных типов суспензий, плотность которых превышает плотность пустой породы, но уступает плотности железа. Под воздействием гравитационных сил побочные компоненты поднимаются на верх, а железо опускается на низ суспензии.

  1. Магнитная сепарация.

Наиболее распространенный способ обогащения, который основывается на различном уровне восприятия компонентами руды воздействия магнитных сил. Такую сепарацию могут проводить с сухой породой, мокрой, или в поочередном сочетании двух ее состояний.

Для переработки сухой и мокрой смеси используют специальные барабаны с электромагнитами.

  1. Флотация.

Для этого метода раздробленную руду в виде пыли опускают в воду с добавлением специального вещества (флотационный реагент) и воздуха. Под действием реагента железо присоединяется к воздушным пузырькам и поднимается на поверхность воды, а пустая порода опускается на дно. Компоненты, содержащие железо, собираются с поверхности в виде пены.

Железные руды - природные минеральные образования, содержащие железо и его соединения в таком объёме, когда промышленное извлечение железа из этих образований целесообразно. Несмотря на то, что железо входит в большем или меньшем количестве в состав всех горных пород, под названием железных руд понимают только такие скопления железистых соединений, из которых с выгодой в экономическом отношении можно получить металлическое железо.

Железные руды представляют собой особые минеральные образования, в состав которых входит железо и его соединения. Данный тип руды считается железной, если доля этого элемента содержаться в таком объеме, чтобы в ее промышленное извлечение было экономически выгодным.

В черной металлургии используются три основных вида железорудной продукции:

— сепарированная железная руда (низкое содержание железа);

— аглоруда (среднее содержание железа);

— окатыши (сырая железосодержащая массы)

Залежи железной руды считаются богатыми, если доля железа в них составляет более 57%. Бедные железные руды могут содержать минимум 26% железа. Ученные выделяют два основных морфологических типа железной руды; линейные и плоскоподобные.

Линейные залежи железной руды представляют собой клиновидные рудные тела в зонах земных разломов, изгибов в процессе метаморфоза. Данный тип железных руд отличается особо высоким содержанием железа (54-69%) с низким содержанием серы и фосфора.

Плоскоподобные залежи можно найти на вершинах пластов железистых кварцитов. Они относятся к типовым корам выветривания.

Богатые железные руды, в основном, отправляют на выплавку в мартеновское и конверторное производство или же на прямое восстановление железа.

Основные промышленные типы месторождений железной руды:

  • — пластовые осадочные месторождения;
  • — комплексные титаномагнетитовые месторождения;
  • — месторождения железистых кварцитов и богатых руд;
  • — скарновые железорудные месторождения;

Второстепенные промышленные типы месторождений железной руды:

  • — железорудные сидеритовые месторождения;
  • — железорудные пластообразные латеритные месторождения;
  • — комплексные карбопатитовые апатит-магнетитовые месторождения;

Мировые запасы разведанных месторождений железной руды составляют 160 миллиардов тонн, в них содержится около 80 миллиардов тонн чистого железа. Крупнейшие месторождения железной руды найдены в Украине, а крупнейшие запасы чистого железа расположены на территории России и Бразилии.

Объем мировой добычи железной руды с каждым годом растет. В 2010 году было добыто более 2,4 млрд тонн железной руды, при этом, Китай, Австралия и Бразилия обеспечили две трети добычи. Если прибавить к ним Россию и Индию, то их суммарная доля на рынке составит более 80%.

Как добывают руду

Рассмотрим несколько основных вариантов добычи железной руды. В каждом конкретном случае выбор в пользу той или иной технологии делается с учетом расположения полезных ископаемых, экономической целесообразности использования того или иного оборудования и т.п.

В большинстве случаев, добыча руды происходит карьерным способом. То есть для организации добычи, сначала вырывается глубокий карьер приблизительно 200-300 метров в глубину. После этого прямо из его дна на больших машинах вывозится железная руда. Которая сразу же после добычи на тепловозах переправляется на различные комбинаты, где из нее изготавливается сталь. На сегодняшний день многие крупные предприятия производят добычу руды, в том случае если у них есть все необходимо оборудование для проведения таких работ.

Рыть карьер следует с использованием больших экскаваторов, однако следует учесть то, что данный процесс может отнять у вас достаточно много лет. После того как экскаваторы дороют до самого первого пласта железной руды, необходимо сдать ее на анализ экспертам, чтобы они смогли определить какой именно процент железа в ней содержится. Если этот процент будет не менее 57, то в таком случае будет экономически выгодным решение о добычи руды в этой местности. Такую руда можно смело перевозить на комбинаты, ведь после переработки из нее обязательно получится сталь высокого качества.

Однако это еще не все, следует очень тщательно проверять сталь, которая появляется в результате переработки железной руды. Если качество добываемой руды не будет соответствовать европейским стандартам, то следует понять, как улучшить качество производства.

Недостаток открытого метода состоит в том, что он позволяет добывать железную руду только на сравнительно небольшой глубине. Поскольку нередко она лежит гораздо глубже – на расстоянии в 600-900 м от поверхности земли – приходится строить шахты. Сначала делают ствол шахты, который напоминает очень глубокий колодец с надежно укрепленными стенками. От ствола в разные стороны отходят коридоры, которые называются штреками. Найденную в них железную руду взрывают, а затем ее куски с помощью специального оборудования поднимают на поверхность. Этот способ добычи железной руды эффективен, но в то же время связан с серьезной опасностью и затратен.

Есть и еще один способ, позволяющий добывать железную руду. Он называется СГД или скважинная гидродобыча. Руду извлекают из-под земли следующим образом: бурят глубокую скважину, опускают туда трубы с гидромонитором и с помощью очень сильной водной струи дробят породу, а затем поднимают ее на поверхность. Этот способ безопасен, однако, к сожалению, он пока неэффективен. Благодаря этому методу удается добыть только около 3% железной руды, в то время как с помощью шахт добывается примерно 70%. Тем не менее, разработкой метода скважинной гидродобычи занимаются специалисты, а потому есть надежда, что в будущем именно этот вариант станет основным, вытеснив карьеры и шахты.

Процессы прямого получения железа из руд

Под процессами прямого получения железа понимают такие химические, электрохимические или химико-термические процессы, которые дают возможность получать непосредственно из руды, минуя доменную печь, металлическое железо в виде губки, крицы или жидкого металла.

Такие процессы ведутся, не расходуя металлургический кокс, флюсы, электроэнергию (на подготовку сжатого воздуха), а также позволяют получить очень чистый металл.

Методы прямого получения железа известны давно. Опробовано более 70 различных способов, но лишь немногие осуществлены и притом в небольшом промышленном масштабе.

В последние годы интерес к этой проблеме вырос, что связано, помимо замены кокса другим топливом, с развитием способов глубокого обогащения руд, обеспечивающих не только высокого содержания железа в концентратах (70…72%), но и почти полное освобождение его от серы и фосфора.

Получение губчатого железа в шахтных печах.

Схема процесса представлена на рис. 2.1.

Рис. 2.1. Схема установки для прямого восстановления железа из руд и получения металлизованных окатышей

При получении губчатого железа добытую руду обогащают и получают окатыши. Окатыши из бункера 1 по грохоту 2поступают в короб 10 шихтозавалочной машины и оттуда в шахтную печь 9 , работающую по принципу противотока. Просыпь от окатышей попадает в бункер 3 с брикетировочным прессом и в виде окатышей вновь поступает на грохот 2. Для восстановления железа из окатышей в печь по трубопроводу 8 подают смесь природного и доменного газов, подвергнутую в установке 7конверсии, в результате которой смесь разлагается на водород и оксид углерода . В восстановительной зоне печи Всоздается температура 1000…1100 0 C, при которой и восстанавливают железную руду в окатышах до твёрдого губчатого железа. Содержание железа в окатышах достигает 90…95%. Для охлаждения железных окатышей по трубопроводу 6 в зону охлаждения 0 печи подают воздух. Охлаждённые окатыши 5 выдаются на конвейер 4 и поступают на выплавку стали в электропечах.

Восстановление железа в кипящем слое.

Мелкозернистую руду или концентрат помещают на решётку, через которую подают водород или другой восстановительный газ под давлением 1,5 МПа. Под давлением водорода частицы руды находятся во взвешенном состоянии, совершая непрерывное движение и образуя «кипящий», «псевдосжиженый» слой. В кипящем слое обеспечивается хороший контакт газа-восстановителя с частицами оксидов железа. На одну тонну восстановленного порошка расход водорода составляет 600…650 м 3 .

Получение губчатого железа в капсулах-тиглях.

Используют карбидокремниевые капсулы диаметром 500 мм и высотой 1500 мм. Шихта загружается концентрическими слоями. Внутренняя часть капсулы заполнена восстановителем – измельч¨нным тв¨рдым топливом и известняком (10…15%) для удаления серы. Второй слой – восстанавливаемая измельч¨нная руда или концентрат, окалина, затем еще один концентрический слой – восстановителя и известняка. Установленные на вагонетки капсулы медленно перемещаются в туннельной печи длиной до 140 м, где происходит нагрев, выдержка при 1200 0 C и охлаждение в течение 100 часов.

Восстановленное железо получают в виде толстостенных труб, их чистят, дробят и измельчают, получая железный порошок с содержанием железа до 99 %, углерода – 0,1…0,2%.

Производство стали

Сущность процесса

Стали – железоуглеродистые сплавы, содержащие практически до 1,5% углерода, при большем его содержании значительно увеличиваются твёрдость и хрупкость сталей и они не находят широкого применения.

Основными исходными материалами для производства стали являются передельный чугун и стальной лом (скрап).

Железо окисляется в первую очередь при взаимодействии чугуна с кислородом в сталеплавильных печах:

Одновременно с железом окисляются кремний, фосфор, марганец и углерод. Образующийся оксид железа при высоких температурах отдаёт свой кислород более активным примесям в чугуне, окисляя их.

Процессы выплавки стали осуществляют в три этапа.

Первый этап – расплавление шихты и нагрев ванны жидкого металла.

Температура металла сравнительно невысокая, интенсивно происходит окисление железа, образование оксида железа и окисление примесей: кремния, марганца и фосфора.

Наиболее важная задача этапа – удаление фосфора. Для этого желательно проведение плавки в основной печи, где шлак содержит . Фосфорный ангидрид образует с оксидом железа нестойкое соединение . Оксид кальция – более сильное основание, чем оксид железа, поэтому при невысоких температурах связывает и переводит его в шлак:

Для удаления фосфора необходимы невысокие температура ванны металла и шлака, достаточное содержание в шлаке . Для повышения содержания в шлаке и ускорения окисления примесей в печь добавляют железную руду и окалину, наводя железистый шлак. По мере удаления фосфора из металла в шлак, содержание фосфора в шлаке увеличивается. Поэтому необходимо убрать этот шлак с зеркала металла и заменить его новым со свежими добавками .

Второй этап – кипение металлической ванны – начинается по мере прогрева до более высоких температур.

При повышении температуры более интенсивно протекает реакция окисления углерода, происходящая с поглощением теплоты:

Для окисления углерода в металл вводят незначительное количество руды, окалины или вдувают кислород.

При реакции оксида железа с углеродом, пузырьки оксида углерода выделяются из жидкого металла, вызывая «кипение ванны». При «кипении» уменьшается содержание углерода в металле до требуемого, выравнивается температура по объ¨му ванны, частично удаляются неметаллические включения, прилипающие к всплывающим пузырькам , а также газы, проникающие в пузырьки . Вс¨ это способствует повышению качества металла. Следовательно, этот этап - основной в процессе выплавки стали.

Также создаются условия для удаления серы. Сера в стали находится в виде сульфида (), который растворяется также в основном шлаке. Чем выше температура, тем большее количество сульфида железа растворяется в шлаке и взаимодействует с оксидом кальция :

Образующееся соединение растворяется в шлаке, но не растворяется в железе, поэтому сера удаляется в шлак.

Третий этап – раскисление стали заключается в восстановлении оксида железа, растворённого в жидком металле.

При плавке повышение содержания кислорода в металле необходимо для окисления примесей, но в готовой стали кислород – вредная примесь, так как понижает механические свойства стали, особенно при высоких температурах.

Сталь раскисляют двумя способами: осаждающим и диффузионным.

Осаждающее раскисление осуществляется введением в жидкую сталь растворимых раскислителей (ферромарганца, ферросилиция, алюминия), содержащих элементы, которые обладают большим сродством к кислороду, чем железо.

В результате раскисления восстанавливается железо и образуются оксиды: , которые имеют меньшую плотность, чем сталь, и удаляются в шлак.

Диффузионное раскисление осуществляется раскислением шлака. Ферромарганец, ферросилиций и алюминий в измельчённом виде загружают на поверхность шлака. Раскислители, восстанавливая оксид железа, уменьшают его содержание в шлаке. Следовательно, оксид железа, растворённый в стали переходит в шлак. Образующиеся при этом процессе оксиды остаются в шлаке, а восстановленное железо переходит в сталь, при этом в стали снижается содержание неметаллических включений и повышается ее качество.

В зависимости от степени раскисления выплавляют стали:

а) спокойные,

б) кипящие,

в) полуспокойные.

Спокойная сталь получается при полном раскислении в печи и ковше.

Кипящая сталь раскислена в печи неполностью. Ее раскисление продолжается в изложнице при затвердевании слитка, благодаря взаимодействию оксида железа и углерода: ,

Образующийся оксид углерода выделяется из стали, способствуя удалению из стали азота и водорода, газы выделяются в виде пузырьков, вызывая её кипение. Кипящая сталь не содержит неметаллических включений, поэтому обладает хорошей пластичностью.

Полуспокойная сталь имеет промежуточную раскисленность между спокойной и кипящей. Частично она раскисляется в печи и в ковше, а частично – в изложнице, благодаря взаимодействию оксида железа и углерода, содержащихся в стали.

Легирование стали осуществляется введением ферросплавов или чистых металлов в необходимом количестве в расплав. Легирующие элементы, у которых сродство к кислороду меньше, чем у железа (), при плавке и разливке не окисляются, поэтому их вводят в любое время плавки. Легирующие элементы, у которых сродство к кислороду больше, чем у железа (), вводят в металл после раскисления или одновременно с ним в конце плавки, а иногда в ковш.

Способы выплавки стали

Чугун переделывается в сталь в различных по принципу действия металлургических агрегатах: мартеновских печах, кислородных конвертерах, электрических печах.

Производство стали в мартеновских печах

Мартеновский процесс (1864-1865, Франция). В период до семидесятых годов являлся основным способом производства стали. Способ характеризуется сравнительно небольшой производительностью, возможностью использования вторичного металла – стального скрапа. Вместимость печи составляет 200…900 т. Способ позволяет получать качественную сталь.

Мартеновская печь (рис.2.2.) по устройству и принципу работы является пламенной отражательной регенеративной печью. В плавильном пространстве сжигается газообразное

топливо или мазут. Высокая температура для получения стали в расплавленном состоянии обеспечивается регенерацией тепла печных газов.

Современная мартеновская печь представляет собой вытянутую в горизонтальном направлении камеру, сложенную из огнеупорного кирпича. Рабочее плавильное пространство ограничено снизу подиной 12, сверху сводом 11, а с боков передней 5 и задней 10 стенками. Подина имеет форму ванны с откосами по направлению к стенкам печи. В передней стенке имеются загрузочные окна 4 для подачи шихты и флюса, а в задней – отверстие 9 для выпуска готовой стали.

Рис.2.2. Схема мартеновской печи

Характеристикой рабочего пространства является площадь пода печи, которую подсчитывают на уровне порогов загрузочных окон. С обоих торцов плавильного пространства расположены головки печи 2, которые служат для смешивания топлива с воздухом и подачи этой смеси в плавильное пространство. В качестве топлива используют природный газ, мазут.

Для подогрева воздуха и газа при работе на низкокалорийном газе печь имеет два регенератора 1.

Регенератор – камера, в которой размещена насадка – огнеупорный кирпич, выложенный в клетку, предназначен для нагрева воздуха и газов.

Отходящие от печи газы имеют температуру 1500…1600 0 C. Попадая в регенератор, газы нагревают насадку до температуры 1250 0 C. Через один из регенераторов подают воздух, который проходя через насадку нагревается до 1200 0 C и поступает в головку печи, где смешивается с топливом, на выходе из головки образуется факел 7, направленный на шихту 6.

Отходящие газы проходят через противоположную головку (левую), очистные устройства (шлаковики), служащие для отделения от газа частиц шлака и пыли и направляются во второй регенератор.

Охлажд¨нные газы покидают печь через дымовую трубу 8.

После охлаждения насадки правого регенератора переключают клапаны, и поток газов в печи изменяет направление.

Температура факела пламени достигает 1800 0 C. Факел нагревает рабочее пространство печи и шихту. Факел способствует окислению примесей шихты при плавке.

Продолжительность плавки составляет 3…6 часов, для крупных печей – до 12 часов. Готовую плавку выпускают через отверстие, расположенное в задней стенке на нижнем уровне пода. Отверстие плотно забивают малоспекающимися огнеупорными материалами, которые при выпуске плавки выбивают. Печи работают непрерывно, до остановки на капитальный ремонт – 400…600 плавок.

В зависимости от состава шихты, используемой при плавке, различают разновидности мартеновского процесса:

– скрап-процесс, при котором шихта состоит из стального лома (скрапа) и 25…45 % чушкового передельного чугуна, процесс применяют на заводах, где нет доменных печей, но много металлолома.

– скрап-рудный процесс, при котором шихта состоит из жидкого чугуна (55…75 %), скрапа и железной руды, процесс применяют на металлургических заводах, имеющих доменные печи.

Футеровка печи может быть основной и кислой. Если в процессе плавки стали, в шлаке преобладают основные оксиды, то процесс называют основным мартеновским процессом, а если кислые – кислым .

Наибольшее количество стали производят скрап-рудным процессом в мартеновских печах с основной футеровкой.

В печь загружают железную руду и известняк, а после подогрева подают скрап. После разогрева скрапа в печь заливают жидкий чугун. В период плавления за счет оксидов руды и скрапа интенсивно окисляются примеси чугуна: кремний, фосфор, марганец и, частично, углерод. Оксиды образуют шлак с высоким содержанием оксидов железа и марганца (железистый шлак). После этого проводят период «кипения» ванны: в печь загружают железную руду и продувают ванну подаваемым по трубам 3 кислородом. В это время отключают подачу в печь топлива и воздуха и удаляют шлак.

Для удаления серы наводят новый шлак, подавая на зеркало металла известь с добавлением боксита для уменьшения вязкости шлака. Содержание в шлаке возрастает, а уменьшается.

В период «кипения» углерод интенсивно окисляется, поэтому шихта должна содержать избыток углерода. На данном этапе металл доводится до заданного химического состава, из него удаляются газы и неметаллические включения.

Затем проводят раскисление металла в два этапа. Сначала раскисление идет путем окисления углерода металла, при одновременной подаче в ванну раскислителей – ферромарганца, ферросилиция, алюминия. Окончательное раскисление алюминием и ферросилицием осуществляется в ковше, при выпуске стали из печи. После отбора контрольных проб сталь выпускают в ковш.

В основных мартеновских печах выплавляют стали углеродистые конструкционные, низко- и среднелегированные (марганцовистые, хромистые), кроме высоколегированных сталей и сплавов, которые получают в плавильных электропечах.

В кислых мартеновских печах выплавляют качественные стали. Применяют шихту с низким содержанием серы и фосфора.

Основными технико-экономическими показателями производства стали в мартеновских печах являются:

· производительность печи – съ¨м стали с 1м 2 площади пода в сутки (т/м 2 в сутки), в среднем составляет 10 т/м 2 ; р

· расход топлива на 1т выплавляемой стали, в среднем составляет 80 кг/т.

С укрупнением печей увеличивается их экономическая эффективность.

Производство стали в кислородных конвертерах.

Кислородно-конвертерный процесс – выплавка стали из жидкого чугуна в конвертере с основной футеровкой и продувкой кислородом через водоохлаждаемую фурму.

Первые опыты в 1933-1934 – Мозговой.

В промышленных масштабах – в 1952-1953 на заводах в Линце и Донавице (Австрия) – получил название ЛД-процесс. В настоящее время способ является основным в массовом производстве стали.

Кислородный конвертер – сосуд грушевидной формы из стального листа, футерованный основным кирпичом.

Вместимость конвертера – 130…350 т жидкого чугуна. В процессе работы конвертер может поворачиваться на 360 0 для загрузки скрапа, заливки чугуна, слива стали и шлака.

Шихтовыми материалами кислородно-конвертерного процесса являются жидкий передельный чугун, стальной лом (не более 30%), известь для наведения шлака, железная руда, а также боксит и плавиковый шпат для разжижения шлака.

Последовательность технологических операций при выплавке стали в кислородных конвертерах представлена на рис. 2.3.

Рис.2.3. Последовательность технологических операций при выплавке стали в кислородных конвертерах

После очередной плавки стали выпускное отверстие заделывают огнеупорной массой и осматривают футеровку, ремонтируют.

Перед плавкой конвертер наклоняют, с помощью завалочных машин загружают скрап рис. (2.3.а), заливают чугун при температуре 1250…1400 0 C (рис. 2.3.б).

После этого конвертер поворачивают в рабочее положение (рис. 2.3.в), внутрь вводят охлаждаемую фурму и через не¨ подают кислород под давлением 0,9…1,4 МПа. Одновременно с началом продувки загружают известь, боксит, железную руду. Кислород проникает в металл, вызывает его циркуляцию в конвертере и перемешивание со шлаком. Под фурмой развивается температура 2400 0 C. В зоне контакта кислородной струи с металлом окисляется железо. Оксид железа растворяется в шлаке и металле, обогащая металл кислородом. Растворенный кислород окисляет кремний, марганец, углерод в металле, и их содержание падает. Происходит разогрев металла теплотой, выделяющейся при окислении.

Фосфор удаляется в начале продувки ванны кислородом, когда ее температура невысока (содержание фосфора в чугуне не должно превышать 0,15 %). При повышенном содержании фосфора для его удаления необходимо сливать шлак и наводить новый, что снижает производительность конвертера.

Сера удаляется в течение всей плавки (содержание серы в чугуне должно быть до 0,07 %).

Подачу кислорода заканчивают, когда содержание углерода в металле соответствует заданному. После этого конвертер поворачивают и выпускают сталь в ковш (рис. 2.3.г), где раскисляют осаждающим методом ферромарганцем, ферросилицием и алюминием, затем сливают шлак (рис. 2.3.д).

В кислородных конвертерах выплавляют стали с различным содержанием углерода, кипящие и спокойные, а также низколегированные стали. Легирующие элементы в расплавленном виде вводят в ковш перед выпуском в него стали.

Сперва расскажу про сам карьер. Лебединский ГОК - является крупнейшим российским предприятием по добыче и обогащению железной руды и имеет самый крупный в мире карьер по добыче железной руды. Комбинат и карьер расположены в Белгородской области, между городами Старый Оскол и Губкин.

Вид на карьер сверху. Он действительно огромный и разрастается с каждым днем. Глубина карьера Лебединского ГОКа - 250 м от уровня моря или 450 м - от поверхности земли (а диаметр - 4 на 5 километров), в него постоянно просачиваются подземные воды, и если бы не работа насосов, то он заполнился до самого верха за месяц. Он дважды занесен в книгу рекордов Гиннеса как крупнейший карьер по добыче негорючих полезных ископаемых.

Немного официальной информации: Лебединский ГОК входит в концерн «Металлоинвест» и является лидирующим производителем железорудной продукции в России. В 2011 году доля производства концентрата комбинатом в общем годовом объеме производства железорудного концентрата и аглоруды в России составила 21%.

В карьере работает много всевозможной техники, но самая заметная конечно же многотонные самосвалы «Белаз» и «Caterpillar».

В год оба комбината входящих в компанию (Лебединский и Михайловский ГОК) производят около 40 млн. тонн железной руды в виде концентрата и аглоруды (это не объем добычи, а обогащенная уже руда, то есть отделенная от пустой породы). Таким образом выходит, что в день на двух ГОКах производится в среднем около 110 тысяч тонн обогащенной железной руды.

Этот малыш за один раз перевозит до 220 тонн (!) железной руды.

Экскаватор дает сигнал и он аккуратно дает задний ход. Всего несколько ковшов и кузов гиганта заполнен. Экскаватор еще раз дает сигнал и самосвал отъезжает.

Недавно были закуплены «Белазы» грузоподъемностью 160 и 220 тонн (до сих пор грузоподъемность самосвалов в карьерах была не больше 136 тонн), и ожидается поступление экскаваторов «Хитачи» с емкостью ковша 23 куб.м. (в настоящее время максимальная емкость ковша карьерных экскаваторов составляет 12 куб.м.).

«Белаз» и «Caterpillar» чередуются. Импортный самосвал перевозит кстати всего 180 тонн. Самосвалы такой большой грузоподъемности - это новая техника, в настоящее время поступающая на ГОКи в рамках инвестпрограммы «Металлоинвеста» по повышению эффективности горно-транспортного комплекса.

Интересная фактура у камней, обратите внимание. Если не ошибаюсь слева кварцит, из такой руды добывают железо. Карьер полон не только железной руды, но и различными минералами. Они, в основном, не представляют интереса для дальнейшей переработки в промышленных масштабах. Сегодня из пустой породы получают мел, а также делают щебень для строительных целей.

Красивые камешки, точно не могу сказать, что за минерал, может кто-то подскажет?

Ежесуточно в карьере Лебединского ГОКа работает 133 единицы основной горной техники (30 большегрузных самосвалов, 38 экскаваторов, 20 бурстанков, 45 тяговых агрегатов).

Я конечно надеялся увидеть зрелищные взрывы, но даже если бы они проходили в этот день, мне все равно не удалось бы проникнуть на территорию карьера. Такой взрыв делают один раз в три недели. Вся техника по нормам безопасности (а ее немало) перед этим выводится из карьера.

Лебединский ГОК и Михайловский ГОК - два крупнейших комбината по добыче и переработке железной руды в России по объему выпускаемой продукции. Компания «Металлоинвест» обладает вторыми по величине в мире разведанными запасами железной руды — около 14,6 млрд тонн по международной классификации JORС, что гарантирует около 150 лет эксплуатационного периода при текущем уровне добычи. Так что жители Старого Оскола и Губкина надолго будут обеспечены работой.

Наверное заметили по предыдущим фотографиям, что погода была неважная, шел дождь, а в карьере стоял туман. Ближе к отъезду он слегка рассеялся, но все равно не сильно. Вытянул фото насколько возможно. Размеры карьера конечно впечатляют.

Прямо посередине карьера стоит гора с пустой породой, вокруг которой добыли всю руду содержащую железо. В скором времени планируется ее взорвать по частям и вывезти из карьера.

Железную руду загружают тут же в жд составы, в специальные усиленные вагоны, которые вывозят руду из карьера, они называются думпкары, их грузоподъемность - 105 тонн.

Геологические пласты, по которым можно изучать историю развития Земли.

Гигантские машины с высоты обзорной площадки кажутся не больше муравья.

Затем руду везут на комбинат, где происходит процесс отделения пустой породы методом магнитной сепарации: руду дробят мелко, потом отправляют на магнитный барабан (сепаратор), к которому в соответствии с законами физики все железное прилипает, а не железное - смывается водой. После этого из полученного железорудного концентрата делают окатыши и горячебрикетированное железо (ГБЖ), которое затем используется для выплавки стали.
Горячебрикетированное железо (ГБЖ) — один из видов прямовосстановленного железа (ПВЖ). Материал с высоким (>90 %) содержанием железа, полученный по технологии, отличной от доменного передела. Используется в качестве сырья для производства стали. Высококачественный (с малым количеством вредных примесей) заменитель чугуна, металлолома.

В отличие от чугуна, в производстве ГБЖ не используется угольный кокс. Процесс производства брикетированного железа базируется на обработке железорудного сырья (окатышей) высокими температурами, чаще всего, посредством природного газа.

Внутрь завода ГБЖ просто так не зайдешь, потому что процесс выпекания горячебрикетированных пирожков проходит при температуре около 900 градусов, а загорать в Старом Осколе у меня не входило в планах).

Лебединский ГОК - единственный производитель ГБЖ в России и СНГ. Комбинат начал производство этого вида продукции в 2001 году, запустив цех по производству ГБЖ (ЦГБЖ-1) с применением технологии HYL-III мощностью 1,0 миллион тонн в год. В 2007 году ЛГОК завершил строительство второй очереди цеха по производству ГБЖ (ЦГБЖ-2) с использованием технологии MIDREX с производственной мощностью 1,4 миллиона тонн в год. В настоящее время производственная мощность ЛГОКа составляет 2,4 миллиона тонн ГБЖ в год.

После карьера мы посетили Оскольский электрометаллургический комбинат (ОЭМК), входящий в Металлургический сегмент компании. В одном из цехов комбината производят вот такие стальные заготовки. Их длина может достигать от 4 до 12 метров, в зависимости от желания заказчиков.

Видите сноп искр? В том месте отрезается брусок стали.

Интересная машина с ковшом, называется бадьевоз, в него сливают шлак в процессе производства.

В соседнем цехе ОЭМК обтачивают и полируют стальные пруты разного диаметра, прошедшие прокат в другом цехе. Кстати, это комбинат - седьмое по величине предприятие в России по производству стали и стальной продукции.В 2011 году доля производства стали на ОЭМК составила 5 % от общего объема стали, производимой в Роcсии, доля производства проката также составила 5%.

ОЭМК применяет передовые технологии, включая технологию прямого восстановления железа и электродуговой плавки, что обеспечивает производство металла высокого качества, с уменьшенным содержанием примесей.

Основными потребителями металлопродукции ОЭМК на российском рынке являются предприятия автомобильной, машиностроительной, трубной, метизной и подшипниковой промышленности.

Металлопродукция ОЭМК экспортируется в Германию, Францию, США, Италию, Норвегию, Турцию, Египет и многие другие страны.

Комбинатом освоено производство сортового проката для изготовления изделий, используемых ведущими мировыми автомобилестроителями, такими как Peugeot, Mercedes, Ford, Renault, Volkswagen. Из некоторых изделий делают подшипники для этих самых иномарок.

Кстати, не первый раз замечаю на подобных производствах женщин - крановщиц.

На этом заводе чуть ли не стерильная чистота, не характерная для подобных производств.

Нравятся сложенные аккуратно стальные пруты.

По требованию заказчика на каждое изделие клеится стикер.

На стикере проштамповывается номер плавки и код марки стали.

Противоположный конец может маркироваться краской, а к каждому пакету к готовыми изделиями крепятся бирки с номером контракта, страны назначения, марки стали, номера плавки, размера в миллиметрах, наименования поставщика и веса пакета.

Эти изделия - эталоны, по которым настраивается оборудование для точной прокатки.

А этот станок может просканировать изделие, и выявить микротрещины и дефекты до того, как металл попадет к заказчику.

На предприятии серьезно относятся к технике безопасности.

Вся вода, используемая в производстве очищается совсем недавно установленным суперсовременным оборудованием.

Это установка очистки сточных вод комбината. После обработки она чище, чем в реке, куда ее сбрасывают.

Вода техническая, почти дистиллированная. Как и любую техническую воду ее пить нельзя, но один раз можно попробовать, это не опасно для здоровья.

На следующий день мы поехали в Железногорск, находящийся в Курской области. Именно там находится Михайловский ГОК. На снимке - строящийся комплекс обжиговой машины №3. Здесь будут производить окатыши.

В его строительство будет инвестировано 450 млн. долларов. Предприятие будет построено и пущено в эксплуатацию в 2014 г.

Это макет комбината.

Затем мы поехали на карьер Михайловского ГОКа. Глубина карьера МГОКа - более 350 метров от поверхности земли, а его размер - 3 на 7 километров. На его территории на самом деле три карьера, это можно видеть на снимке со спутника. Один большой и два поменьше. Примерно через 3-5 лет карьер разрастется настолько, что станет одним большим единым, и возможно догонит по размерам Лебединский карьер.

В карьере задействовано 49 самосвалов, 54 тяговых агрегата, 21 тепловоз, 72 экскаватора, 17 буровых станков, 28 бульдозеров и 7 автогрейдеров.

В остальном добыча руды на МГОКе не отличается от ЛГОКа.

В этот раз нам все-таки удалось попасть на комбинат, где железнорудный концентрат превращают в конечный продукт - окатыши..
Окатыши — комочки измельчённого рудного концентрата. Полуфабрикат металлургического производства железа. Является продуктом обогащения железосодержащих руд специальными концентрирующими способами. Используется в доменном производстве для получения чугуна.

Для производства окатышей используют железорудный концентрат. Для удаления минеральных примесей исходную (сырую) руду мелко измельчают и обогащают различными способами.

Процесс изготовления окатышей часто называют «окомкование». Шихта, то есть смесь тонко измельчённых концентратов железосодержащих минералов, флюса (добавок, регулирующих состав продукта), и упрочняющих добавок (обычно это бентонитовая глина), увлажняется и подвергается окомкованию во вращающихся чашах (грануляторах) или барабанах-окомкователях. Они самые на снимке.

Подойдем поближе.

В результате окомкования получают близкие к сферическим частицы диаметром 5÷30 мм.

Довольно интересно наблюдать за процессом.

Затем окатыши по ленте направляются в корпус обжига.

Они высушиваются и обжигаются при температурах 1200÷1300° C на специальных установках — обжиговых машинах. Обжиговые машины (обычно конвейерного типа) представляют собой конвейер из обжиговых тележек (палет), которые движутся по рельсам.

Но на снимке - концентрат, который вскоре попадет в барабаны.

В верхней части обжиговой машины над обжиговыми тележками располагают отопительный горн, в котором происходит сжигание газообразного, твердого или жидкого топлива и формирование теплоносителя для сушки, нагревания и обжига окатышей. Различают обжиговые машины с охлаждением окатышей непосредственно на машине и с выносным охладителем. Этого процесса к сожалению мы не увидели.

Обожжённые окатыши приобретают высокую механическую прочность. При обжиге удаляется значительная часть сернистых загрязнений. Так выглядит готовый к употреблению продукт).

Несмотря на то, что оборудование служит с советских времен, процесс автоматизирован, и для контроля за ним не нужно большого количества персонала.

Редко бывает так, что я посещаю одно и то же производство дважды. Но когда меня опять позвали на Лебединский ГОК и ОЭМК, то я решил, что нужно пользоваться моментом. Интересно было посмотреть, что изменилось за 4 года с прошлой поездки, к тому же в этот раз я был больше экипирован и помимо фотоаппарата, захватил с собой еще и 4К камеру для того, чтобы передать вам в действительности всю атмосферу, обжигающие и завораживающие глаза кадры с ГОКа и сталелитейных цехов Оскольского электрометаллургического комбината.

Сегодня специально для репортаж о добыче железной руды, ее переработке, переплавке и получении стальных изделий.


Лебединский ГОК является крупнейшим российским предприятием по добыче и обогащению железной руды и имеет самый крупный в мире карьер по добыче железной руды. Комбинат и карьер расположены в Белгородской области, недалеко от г. Губкин. Предприятие входит в компанию "Металлоинвест" и является лидирующим производителем железорудной продукции в России.

Вид со смотровой площадки при въезде на карьер завораживает.

Он действительно огромный и разрастается с каждым днем. Глубина карьера Лебединского ГОКа - 250 м от уровня моря или 450 м - от поверхности земли (а диаметр - 4 на 5 километров), в него постоянно просачиваются подземные воды, и если бы не работа насосов, то он заполнился до самого верха за месяц. Он дважды занесен в книгу рекордов Гиннесса как крупнейший карьер по добыче негорючих полезных ископаемых.

Так он выглядит с высоты полета шпионского спутника.

Помимо Лебединского ГОКа, в состав Металлоинвест также входит Михайловский ГОК, что расположен в Курской области. Вместе два крупнейших комбината выводят компанию в мировые лидеры по добыче и переработке железной руды в России, и в 5-ку в мире по производству товарной железной руды. Совокупные разведанные запасы этих комбинатов оцениваются в 14,2 млрд тонн по международной классификации JORС, что гарантирует около 150 лет эксплуатационного периода при текущем уровне добычи. Так что горняки и их дети будут надолго обеспечены работой.

Погода в этот раз также не была солнечной, местами даже моросил дождь, чего не было в планах, но от того фотографии вышли еще контрастнее).

Примечательно, что прямо “в сердце” карьера расположен участок с пустой породой, вокруг которого уже добыли всю руду содержащую железо. За 4 года он заметно уменьшился, поскольку сие мешает дальнейшему развитию карьера и его планомерно вырабатывают тоже.

Железную руду загружают тут же в жд составы, в специальные усиленные вагоны, которые вывозят руду из карьера, они называются думпкары, их грузоподъемность - 120 тонн.

Геологические пласты, по которым можно изучать историю развития Земли.

Кстати, верхние слои карьера, состоящие из каменных пород, не содержащих железо, не уходят в отвал, а перерабатываются в щебень, который потом используется как стройматериал.

Гигантские машины с высоты обзорной площадки кажутся не больше муравья.

По этой железной дороге, которая связывает карьер с заводами, руду транспортируют на дальнейшую переработку. Об этом рассказ будет дальше.

В карьере работает много всевозможной техники, но самая заметная, конечно же, - это многотонные самосвалы "Белаз" и "Caterpillar".

Кстати, у этих гигантов есть такие же автомобильные номера, как и обычных легковых авто и они зарегистрированы в ГИБДД.

В год оба горно обогатительных комбината входящих в Металлоинвест (Лебединский и Михайловский ГОК) производят около 40 млн. тонн железной руды в виде концентрата и аглоруды (это не объем добычи, а обогащенная уже руда, то есть отделенная от пустой породы). Таким образом выходит, что в день на двух ГОКах производится в среднем около 110 тысяч тонн обогащенной железной руды.

Этот Белаз за один раз перевозит до 220 тонн железной руды.

Экскаватор дает сигнал и он аккуратно дает задний ход. Всего несколько ковшов и кузов гиганта заполнен. Экскаватор еще раз дает сигнал и самосвал отъезжает.
У этого экскаватора "Хитачи", который является самым крупным в карьере емкость ковша 23 куб.м.

"Белаз" и "Caterpillar" чередуются. Импортный самосвал перевозит кстати всего 180 тонн.

Скоро и этой грудой заинтересуется водитель "Хитачи".

Интересная фактура у железной руды.

Ежесуточно в карьере Лебединского ГОКа работает 133 единицы основной горной техники (30 большегрузных самосвалов, 38 экскаваторов, 20 бурстанков, 45 тяговых агрегатов).

Белазы помельче

Взрывы увидеть не удалось, да и редко когда сми или блогеров пускают на них из-за норм безопасности, Такой взрыв делают один раз в три недели. Вся техника и работники по нормам безопасности перед этим выводится из карьера.

Ну а потом самосвалы выгружают руду ближе к железной дороге тут же в карьере, откуда другие экскаваторы перегружают ее в думпкары, о которых я писал выше.

Затем руду везут на обогатительную фабрику, где железистые кварциты подвергаются дроблению и происходит процесс отделения пустой породы методом магнитной сепарации: руду измельчают, потом отправляют на магнитный барабан (сепаратор), к которому в соответствии с законами физики все железное прилипает, а не железное - смывается водой. После этого из полученного железорудного концентрата делают окатыши и ГБЖ, которое затем используется для выплавки стали.

На фото мельница, перемалывающая руду.

В цехах стоят такие поильники, все-таки тут жарко, а без воды никак.

Масштабы цеха, где в барабанах дробится руда впечатляют. Руда перемалывается естественным образом, когда камни бьются друг о друга в процессе вращения. В барабан с семиметровым диаметром помещается около 150 тонн руды. Существуют и 9-метровые барабаны, их производительность больше чуть ли не вдвое!

Зашли на минуту в пульт управления цехом. Здесь довольно скромно, но напряжение чувствуется сразу: работают диспетчеры и контролируют рабочий процесс на пультах управления. Все процессы автоматизированы, поэтому любое вмешательство - будь то остановка или запуск какого либо из узлов проходит через них и с их непосредственным участием.

Следующей точкой маршрута стал комплекс третьей очереди цеха по производству горячебрикетированного железа - ЦГБЖ-3, на котором как вы уже догадались, производится горячебрикетированное железо.

Производственная мощность ЦГБЖ-3 составляет 1,8 млн тонн продукции в год, общий объем производственных мощностей компании с учетом 1 и 2 очереди по производству ГБЖ вырос совокупно до 4,5 млн тонн в год.

Комплекс ЦГБЖ-3 занимает территорию в 19 гектаров, и в него входит около 130 объектов: станции грохочения шихты и продукта, тракты и транспортировки окисленных окатышей и готовой продукции, системы обеспыливания нижнего уплотнительного газа и ГБЖ, эстакады трубопроводов, редукционная станция природного газа, станция уплотнительного газа, электрические подстанции, реформер, компрессор технологического газа и другие объекты. Сама шахтная печь высотой 35,4 м, размещается в восьмиярусной металлоконструкции высотой 126 метров.

Также в рамках проекта также была проведена и модернизация сопутствующих производств - обогатительной фабрики и фабрики окомкования, обеспечивших выпуск дополнительных объемов железорудного концентрата (содержанием железа более 70%) и высокоосновных окатышей повышенного качества.

Производство ГБЖ сегодня является самым экологичным способ получения железа. При его производстве не образуются вредные выбросы, связанные с производством кокса, агломерата и чугуна, кроме того нет и твёрдых отходов в виде шлака. По сравнении с производством чугуна энергозатраты на производство ГБЖ ниже на 35%, выбросы парниковых газов - ниже на 60%.
Производится ГБЖ из окатышей при температуре около 900 градусов.

В последующем через пресс-форму или как ее еще называют “брикет-пресс” образуются железные брикеты.

Вот так выглядит товарная продукция:

Ну теперь немного позагораем в горячих цехах! Это Оскольский электрометаллургический комбинат, проще говоря ОЭМК, где плавится сталь.

Близко подходит нельзя, жар чувствуется ощутимо.

На верхних этажах горячий, богатый железом суп помешивают половником.

Занимаются этим жаростойкие сталевары.

Слегка пропустил момент выливания железа в специальную емкость.

А это уже готовый железный суп, пожалуйте к столу, пока не остыл.

И еще один такой же.

А мы идем дальше по цеху. На рисунке можно заметить образцы стальных изделий, которые производит завод.

Производство здесь очень фактурное.

В одном из цехов комбината производят вот такие стальные заготовки. Их длина может достигать от 4 до 12 метров, в зависимости от желания заказчиков. На фото 6-ручьевая машина непрерывного литья заготовок.

Здесь видно, как заготовки режутся на куски.

В следующем цеху горячие заготовки охлаждаются водой до нужной температуры.

А так выглядят уже остывшие, но еще не обработанные изделия.

Это склад, куда помещаются такие полуфабрикаты.

А это многотонные, тяжелые валы для проката железа.

В соседнем цехе ОЭМК обтачивают и полируют стальные пруты разного диаметра, прошедшие прокат в предыдущих цехах. Кстати, этот комбинат - седьмое по величине предприятие в России по производству стали и стальной продукции.

После полировки продукция в соседнем цехе.

Еще один цех, здесь происходит обточка и полировка изделий.

Так они выглядят в необработанном виде.

Складывание полированных прутов воедино.

И складирование с помощью крана.

Основными потребителями металлопродукции ОЭМК на российском рынке являются предприятия автомобильной, машиностроительной, трубной, метизной и подшипниковой промышленности.

Нравятся сложенные аккуратно стальные пруты).

ОЭМК применяет передовые технологии, включая технологию прямого восстановления железа и электродуговой плавки, что обеспечивает производство металла высокого качества, с уменьшенным содержанием примесей.

Металлопродукция ОЭМК экспортируется в Германию, Францию, США, Италию, Норвегию, Турцию, Египет и многие другие страны.

Комбинат производит изделия, используемые ведущими мировыми автомобилестроителями, такими как Peugeot, Mercedes, Ford, Renault, Volkswagen. Из них делают подшипники для этих самых иномарок.

По требованию заказчика на каждое изделие клеится стикер. На стикере проштамповывается номер плавки и код марки стали.

Противоположный конец может маркироваться краской, а к каждому пакету к готовыми изделиями крепятся бирки с номером контракта, страны назначения, марки стали, номера плавки, размера в миллиметрах, наименования поставщика и веса пакета.

Спасибо, что дочитали до конца, надеюсь вам было интересно.
Отдельное спасибо кампании "Металлоинвест" за приглашение!

Жми на кнопку, чтобы подписаться на "Как это сделано"!