Разрешающая способность микроскопа зависит от. Разрешающая способность микроскопа

Микроскоп предназначен для наблюдения мелких объектов с большим увеличением и с большей разрешающей способностью, чем дает лупа. Оптическая система микроскопа состоит из двух частей: объектива и окуляра. Объектив микроскопа образует действительное увеличенное обратное изображение предмета в передней фокальной плоскости окуляра. Окуляр действует как лупа и образует мнимое изображение на расстоянии наилучшего видения. По отношению ко всему микроскопу рассматриваемый предмет располагается в передней фокальной плоскости.

Увеличение микроскопа

Действие микрообъектива характеризуют его линейным увеличением: V об =-Δ/F\" об * F\" об - фокусное расстояние микрообъектива * Δ - расстояние между задним фокусом объектива и передним фокусом окуляра, называемое оптическим интервалом или оптической длиной тубуса.

Изображение, создаваемое объективом микроскопа в передней фокальной плоскости окуляра рассматривается через окуляр, который действует как лупа с видимым увеличением:

G ок =¼ F ок

Общее увеличение микроскопа определяется как произведение увеличения объектива на увеличение окуляра: G=V об *G ок

Если известно фокусное расстояние всего микроскопа, то его видимое увеличение можно определить так же, как и у лупы:

Как правило, увеличение современных объективов микроскопов стандартизованное и составляет ряд чисел: 10, 20, 40, 60, 90, 100 крат. Увеличения окуляров тоже имеют вполне определенные значения, например 10, 20, 30 крат. Во всех современных микроскопах имеется комплект объективов и окуляров, которые специально рассчитываются и изготавливаются так, что подходят друг к другу, поэтому их можно комбинировать для получения разных увеличений.

Поле зрения микроскопа

Поле зрения микроскопа зависит от углового поля окуляра ω , в пределах которого получается изображение достаточно хорошего качества: 2y=500*tg(ω)/G * G - увеличение микроскопа

При данном угловом поле окуляра линейное поле микроскопа в пространстве предметов тем меньше, чем больше его видимое увеличение.

Диаметр выходного зрачка микроскопа

Диаметр выходного зрачка микроскопа вычисляется следующим образом:
где A – передняя апертура микроскопа.

Диаметр выходного зрачка микроскопа обычно немного меньше диаметра зрачка глаза (0.5 – 1 мм).

При наблюдении в микроскоп зрачок глаза нужно совмещать с выходным зрачком микроскопа.

Разрешающая способность микроскопа

Одной из важнейших характеристик микроскопа является его разрешающая способность. Согласно дифракционной теории Аббе, линейный предел разрешения микроскопа, то есть минимальное расстояние между точками предмета, которые изображаются как раздельные, зависит от длины волны и числовой апертуры микроскопа:
Предельно достижимую разрешающую способность оптического микроскопа можно сосчитать, исходя из выражения для апертуры микроскопа . Если учесть, что максимально возможное значение синуса угла – единичное , то для средней длины волны можно вычислить разрешающую способность микроскопа:

Повысить разрешающую способность микроскопа можно двумя способами: * Увеличивая апертуру объектива, * Уменьшая длину волны света.

Иммерсия

Для того чтобы увеличить апертуру объектива, пространство между рассматриваемым предметом и объективом заполняется так называемой иммерсионной жидкостью – прозрачным веществом с показателем преломления больше единицы. В качестве такой жидкости используют воду , кедровое масло , раствор глицерина и другие вещества. Апертуры иммерсионных объективов большого увеличения достигают величины , тогда предельно достижимая разрешающая способность иммерсионного оптического микроскопа составит.

Применение ультрафиолетовых лучей

Для увеличения разрешающей способности микроскопа вторым способом применяются ультрафиолетовые лучи, длина волны которых меньше, чем у видимых лучей. При этом должна быть использована специальная оптика, прозрачная для ультрафиолетового света. Поскольку человеческий глаз не воспринимает ультрафиолетовое излучение, необходимо либо прибегнуть к средствам, преобразующим невидимое ультрафиолетовое изображение в видимое, либо фотографировать изображение в ультрафиолетовых лучах. При длине волны разрешающая способность микроскопа составит.

Кроме повышения разрешающей способности, у метода наблюдения в ультрафиолетовом свете есть и другие преимущества. Обычно живые объекты прозрачны в видимой области спектра, и поэтому перед наблюдением их предварительно окрашивают. Но некоторые объекты (нуклеиновые кислоты, белки) имеют избирательное поглощение в ультрафиолетовой области спектра, благодаря чему они могут быть «видимы» в ультрафиолетовом свете без окрашивания.

Увеличение микроскопа определяется как произведение увеличения объектива на увеличение окуляра. У типичных исследовательских микроскопов увеличение окуляра равно 10, а увеличение объективов – 10, 45 и 100. Соответственно, увеличение такого микроскопа составляет от 100 до 1000. Некоторые из микроскопов имеют увеличение до 2000. Еще более высокое увеличение не имеет смысла, так как при этом разрешающая способность не улучшается. Напротив, качество изображения ухудшается.

Формула для увеличения микроскопа

Качество изображения определяется разрешающей способностью микроскопа , т.е. минимальным расстоянием, на котором оптика микроскопа может различить раздельно две близко расположенные точки. разрешающая способность зависит от числовой апертуры объектива, конденсора и длины волны света, которым освещается препарат. Числовая апертура (раскрытие) зависит от угловой апертуры и показателя преломления среды, находящейся между фронтальной линзой объектива и конденсора и препаратом.

Кроме разрешающей способности системы, числовая апертура характеризует светосилу объектива: интенсивность света, приходящаяся на единицу площади изображения, приблизительно равна квадрату NA. Величина NA составляет примерно 0,95 для хорошего объектива. Микроскоп обычно рассчитывают таким образом, чтобы его полное увеличение составляло около 1000 NA.

Предел разрешения – наименьшее расст. Между двумя близко расположенными точками предмета, разлизимыми в микроскоп(воспринимаемыми как две точки).

Апертура (лат. apertura - отверстие) в оптике - характеристика оптического прибора, описывающая его способность собирать свет и противостоять дифракционному размытию деталей изображения. В зависимости от типа оптической системы эта характеристика может быть линейным или угловым размером. Как правило, среди деталей оптического прибора специально выделяют, так называемую, апертурную диафрагму, которая сильнее всего ограничивает диаметры световых пучков, проходящих через оптический инструмент. Часто, роль такой апертурной диафрагмы выполняет оправа или, просто, края одного из оптических элементов (линзы, зеркала, призмы).

Угловая апертура - угол между крайними лучами конического светового пучка на входе (выходе из) оптической системы.

Числовая апертура - равна произведению показателя преломления среды между предметом и объективом на синус апертурного угла. Именно эта величина наиболее полно определяет одновременно светосилу, разрешающую способность объектива микроскопа. Для увеличения числовой апертуры объективов в микроскопии пространство между объективом и покровным стеклом заполняют иммерсионной жидкостью.

Угловая апертура объектива - это максимальный угол (AOB), под которым могут попадать в объектив лучи, прошедшие через препарат. Числовая апертура объектива равна произведению синуса половины угловой апертуры на показатель преломления среды, находящейся между предметным стеклом и фронтальной линзой объектива. N.A. = n sinα где, N.A. - числовая апертура; n - показатель преломления среды между препаратом и объективом; sinα - синус угла α равного половине угла АОВ на схеме.

Таким образом, апертура сухих систем (между фронтальной линзой объектива и препаратом-воздух) не может быть более 1 (обычно не более 0,95). Среда, помещаемая между препаратом и объективом, называется иммерсионной жидкостью или иммерсией, а объектив, рассчитанный для работы с иммерсионной жидкостью, называют иммерсионным. Благодаря иммерсии с более высоким показателем преломления чем у воздуха, можно повысить числовую апертуру объектива и, следовательно, разрешающую способность.

Числовая апертура объективов всегда гравируется на их оправах.

Разрешающая способность микроскопа зависит также от апертуры конденсора. Если считать апертуру конденсора равной апертуре объектива, то формула разрешающей способности имеет вид R=λ/2NA, где R - предел разрешения; λ - длина волны; N.A - числовая апертура. Из этой формулы видно, что при наблюдении в видимом свете (зеленый участок спектра - λ=550нм), разрешающая способность (предел разрешения) микроскопа не может быть > 0,2мкм

Иммерсия (от лат. immersio - погружение) - жидкость, заполняющая пространство между объектом наблюдения и специальным иммерсионным объективом (конденсором и предметным стеклом). В основном применяются три типа иммерсионных жидкостей: масляная иммерсия (МИ/Oil), водная иммерсия (ВИ/W) и глицериновая иммерсия (ГИ/Glyc), причем последняя в основном применяется в ультрафиолетовой микроскопии.

Иммерсия применяется в тех случаях, когда требуется повысить разрешающую способность микроскопа или ее применения требует технологический процесс микроскопирования. При этом происходит:

1. повышение видимости за счет увеличения разности показателя преломления среды и объекта;

2. увеличение глубины просматриваемого слоя, который зависит от показателя преломления среды.

Кроме того, иммерсионная жидкость может уменьшать количество рассеянного света за счет исчезновения бликов от объекта. При этом устраняются неизбежные потери света при его попадании в объектив.

Рефракция света - изменение направления световых лучей в среде с изменяющимся в пространстве показателем преломления п. Обычно термином «Р. с.» пользуются при описании распространения оптич. излучения в неоднородных средах с плавно меняющимся п от точки к точке (траектории лучей света в таких средах - плавно искривляющиеся линии). Резкое изменение направления лучей на границе раздела двух однородных сред с разными п обычно наз. преломлением света. В атм. оптике, очковой оптике традиционно используют именно термин «рефракция». Т. к. атмосфера является неоднородной средой, то вследствие Р. с. происходит смещение видимого положения небесных светил относительно истинного, что необходимо учитывать в астрономии. Р. с. в атмосфере должна учитываться и при геодезич. измерениях. Р. с. является причиной миражей. Явление Р. с. позволяет визуализировать оптич. неоднородности в твёрдых, жидких и газовых средах.

Рефрактометр ия (от лат. refractus - преломленный и греч. metreo - измеряю) - это метод исследования веществ, основанный на определении показателя (коэффициента) преломления (рефракции) и некоторых его функций. Рефрактометрия (рефрактометрический метод) применяется для идентификации химических соединений, количественного и структурного анализа, определения физико-химических параметров веществ.

Показатель преломления n, представляет собой отношение скоростей света в граничащих средах. Для жидкостей и твердых тел n обычно определяют относительно воздуха, а для газов - относительно вакуума. Значения n зависят от длины волны l света и температуры, которые указывают соответственно в подстрочном и надстрочном индексах. Методы рефрактометрии делятся на две большие группы: объективные и субъективные. Несмотря на бесспорное преимущество объективных методов, каждое объективное исследование, как правило, завершается корректировкой субъективными методами.Объективные методы. Различают две подгруппы объективных методов рефрактометрии:

1. Объективные по отношению к пациенту и субъективные по отношению к врачу. Примером может служить скиаскопия, объективные данные которой могут быть получены через субъективную оценку врачом скиаскопического рефлекса исследуемого.2. Объективный по отношению и к исследуемому, и исследующему, реализуемый при помощи рефрактометрического автомата.

Поляризация света - физ. характеристика оптич. излучения, описывающая поперечную анизотропию световых волн, т. е. неэквивалентность разл. направлений в плоскости, перпендикулярной световому лучу. Существ. значение для понимания П. с. имело её проявление в эффектах интерференции света и, в частности, тот факт, что два световых луча с взаимно перпендикулярными плоскостями поляризации непосредственно не интерферируют. П. с. нашла естеств. объяснение в эл.-магн. теории света, разработанной в 1865-73 Дж. К. Максвеллом (J. С. Maxwell), позднее - в квантовой электродинамике.

Термин поляризация волн был введен Малюсом применительно к поперечным механическим волнам

Для получения поляризованного света и его обнаружения существуют специальные физические приборы, называемые в первом случае поляризаторами, а во втором анализаторами. Обычно они устроены одинаково.Существует.несколько способов получения и анализа поляризованного света.

1. Поляризация при помощи поляроидов. Поляроиды представляют собой целлулоидные пленки с нанесенным на них тончайшим слоем кристалликов сернокислого нодхинина. Применение полярой^ дов является в настоящее время наиболее распространенным способом поляризации света.

2. Поляризация посредством отражения. Если естественный луч света падает на черную полированную поверх ность, то отраженный луч оказывается частично поляризованным. В качестве поляризатора и анализатора может быть употреблено зеркальное или достаточно хорошо отполированное обычное оконное стекло, зачерненное с одной стороны асфальтовым лаком.Степень поляризации тем больше, чем правильнее выдержан угол падения. Для стекла угол падения равен 57°.

3. Поляризация посредством п р е л о м л е н и я. Световой луч поляризуется не только при отражении, но и при

преломлении. В этом случае в качестве поляризатора и анализатора используется стопка

сложенных вместе 10-15 тонких стеклянных пластинок, расположенных к падающим на них световым лучам под углом в 57°.

Призма Николя (сокр. николь ) - поляризационное устройство, в основе принципа действия которого лежат эффекты двойного лучепреломления и полного внутреннего отражения.Призма Николя представляет собой две одинаковые треугольные призмы из исландского шпата, склеенные тонким слоем канадского бальзама. Призмы вытачиваются так, чтобы торец был скошен под углом 68° относительно направления проходящего света, а склеиваемые стороны составляли прямой угол с торцами. При этом оптическая ось кристалла (AB ) находится под углом 64° с направлением света.

Апертура полной поляризации призмы составляет 29°. Особенностью призмы является изменение направления выходящего луча при вращении призмы, обусловленное преломлением скошенных торцов призмы. Призма не может применяться для поляризации ультрафиолета, так как канадский бальзам поглощает ультрафиолет.Свет с произвольной поляризацией, проходя через торец призмы испытывает двойное лучепреломление, расщепляясь на два луча - обыкновенный, имеющий горизонтальную плоскость поляризации (AO ) и необыкновенный, с вертикальной плоскостью поляризации (АE ). После чего обыкновенный луч испытывает полное внутреннее отражение о плоскость склеивания и выходит через боковую поверхность. Необыкновенный беспрепятственно выходит через противоположный торец призмы.

Закон Брюстера - закон оптики, выражающий связь показателя преломления с таким углом, при котором свет, отражённый от границы раздела, будет полностью поляризованным в плоскости, перпендикулярной плоскости падения, а преломлённый луч частично поляризуется в плоскости падения, причем поляризация преломленного луча достигает наибольшего значения. Легко установить, что в этом случае отраженный и преломленный лучи взаимно перпендикулярны. Соответствующий угол называется углом Брюстера .

Это явление оптики названо по имени шотландского физика Дэвида Брюстера, открывшего его в 1815 году.

Закон Брюстера : , где n 12 - показатель преломления второй среды относительно первой, θ Br - угол падения (угол Брюстера).

При отражении от одной пластинки под углом Брюстера интенсивность линейно поляризованного света очень мала (около 4% от интенсивности падающего луча). Поэтому для того, чтобы увеличить интенсивность отраженного света (или поляризовать свет, прошедший в стекло, в плоскости, параллельной плоскости падения) применяют несколько скрепленных пластинок, сложенных в стопу – стопу Столетова. Легко проследить по чертежу происходящее. Пусть на верхнюю часть стопы падает луч света. От первой пластины будет отражаться полностью поляризованный луч (около 4% первоначальной интенсивности), от второй пластины также отразится полностью поляризованный луч (около 3,75% первоначальной интенсивности) и так далее. При этом луч, выходящий из стопы снизу, будет все больше поляризоваться в плоскости, параллельной плоскости падения, по мере добавления пластин.Понятие полного преломления имеет важное значение для радиосвязи: большинство штыревых антенн излучает именно вертикально поляризованные волны. Таким образом, если волна падает на поверхность раздела (землю, воду или ионосферу) под углом Брюстера, отраженной волны не будет, соответсвенно канал будет отсутствовать.

Закон Малюса - зависимость интенсивности линейно-поляризованного света после его прохождения через поляризатор от угла между плоскостями поляризации падающего света и поляризатора, где I 0 - интенсивность падающего на поляризатор света, I - интенсивность света, выходящего из поляризатора.Свет с иной (не линейной) поляризацией может быть представлен в виде суммы двух линейно-поляризованных составляющих, к каждой из которых применим закон Малюса. По закону Малюса рассчитываются интенсивности проходящего света во всех поляризационных приборах, например в поляризационных фотометрах и спектрофотометрах. Потери на отражение, зависящие от и не учитываемые законом Малюса, определяются дополнительно.

Оптически активные вещества , среды, обладающие естественной оптической активностью . О.-а. в. подразделяются на 2 типа. Относящиеся к 1-му из них оптически активны в любом агрегатном состоянии (сахара, камфора, винная кислота), ко 2-му - активны только в кристаллической фазе (кварц, киноварь). У веществ 1-го типа оптическая активность обусловлена асимметричным строением их молекул, 2-го типа - специфической ориентацией молекул (ионов) в элементарных ячейках кристалла (асимметрией поля сил, связывающих частицы в кристаллической решётке). Кристаллы О.-а. в. всегда существуют в двух формах - правой и левой; при этом решётка правого кристалла зеркально-симметрична решётке левого и не может быть пространственно совмещена с нею (т. н. энантиоморфные формы, см. Энантиоморфизм ). Оптической активности правой и левой форм О.-а. в. 2-го типа имеют разные знаки (и равны по абсолютной величине при одинаковых внешних условиях), поэтому их называется оптическими антиподами (иногда так называют и кристаллы О.-а. в. 1-го типа).

Вращение плоскости поляризации света - объединённая общим феноменологич. проявлением группа эффектов, заключающихся в повороте плоскости поляризации поперечной волны в результате взаимодействия с анизотропной средой. Наиб. известностью пользуются эффекты, связанные с В.п.п. света, хотя аналогичные явления наблюдаются и в др. областях спектра эл.-магн. волн (в частности, в СВЧ-диапазоне), а также в акустике, физике элементарных частиц и т. д.В. п. п. обычно обусловлено различием коэф. преломления среды для двух циркулярно поляризованных (по правому и левому кругу) волн (т.н. циркулярной анизотропией) и описывается в общем случае аксиальным тензором второго ранга, связывающим аксиальный вектор угла поворота плоскости поляризации с полярным волновым вектором . В среде, обладающей только циркулярной анизотропией, линейно поляризованная волна может быть разложена на две нормальные циркулярно поляризованные волны равной амплитуды (см. Нормальные колебания ),разность фаз между к-рыми определяет азимут плоскости поляризации суммарной волны В однородных средах, обладающих циркулярной анизотропией, угол В. п. п. линейно зависит от длины пути в среде. Циркулярная анизотропия может быть как естественной (спонтанной, присущей среде в невозмущённом состоянии), так и искусственной, индуцированной внеш. воздействием. Во втором случае циркулярная асимметрия может быть обусловлена асимметрией возмущающего воздействия или совокупными симметрийными свойствами среды и возмущения

Угол поворота . Луч света может быть естественным и поляризованным. В естественном луче света колебания вектора происходит неупорядоченно.

Поляризованные лучи света в свою очередь подразделяются на линейно-поляризованные, когда колебания происходят по прямой, перпендикулярной к лучу; поляризованные по кругу, когда конец вектора описывает окружность в плоскости, перпендикулярной к направлению луча, и эллиптически-поляризованные, в которых колебания совершаются по эллипсу.

Плоскость, в которой происходят колебания в плоско-поляризованном луче, называется плоскостью колебания.

Плоскость, проходящая через направление поляризованного луча и перпендикулярная к плоскости колебания, называется плоскостью поляризации.

Световые волны с помощью приборов-поляризаторов (поляроид, пластинка турмалина, николь и др.) могут быть поляризованы.

Для обнаружения и исследования микроорганизмов применяют микроскопы. Световые микроскопы предназначены для изучения микроорганизмов, которые имеют размеры не менее 0,2 мкм (бактерии, простейшие и т. п.) a электронные для изучения более мелких микроорганизмов (вирусы) и мельчайших структур бактерий.
Современные световые микроскопы - это сложные оптические приборы, обращение с которыми требует определенных знаний, навыков и большой аккуратности.
Световые микроскопы подразделяются на студенческие, рабочие, лабораторные и исследовательские, различающиеся по конструкции и комплектации оптикой. Отечественные микроскопы (Биолам", "Бимам", "Микмед") имеют обозначения, указывающие, к какой группе они относятся (С - студенческие, Р - рабочие, Л - лабораторные, И - исследовательские), комплектация обозначается цифрой.

В микроскопе различают механическую и оптическую части.
К механической части относятся: штатив (состоящий из основания и тубусодержателя) и укрепленные на нем тубус с револьвером для крепления и смены объективов, предметный столик для препарата, приспособления для крепления конденсора и светофильтров, а также встроенные в штатив механизмы для грубого (макромеханизм, макровинт) и тонкого
(микромеханизм, микровинт) перемещения предметного столика или тубусодержателя.
Оптическая часть микроскопа представлена объективами, окулярами и осветительной системой, которая в свою очередь состоит из расположенных под предметным столиком конденсора Аббе, зеркала, имеющего плоскую и вогнутую сторону, а также отдельного или встроенного осветителя. Объективы ввинчиваются в револьвер, а соответствующий окуляр, через который наблюдают изображение, устанавливают с противоположной стороны тубуса. Различают монокулярный (имеющий один окуляр) и бинокулярный (имеющий два одинаковых окуляра) тубусы.

Принципиальная схема микроскопа и осветительной системы

1. Источник света;
2. Коллектор;
3. Ирисовая полевая диафрагма;
4. Зеркало;
5. Ирисовая аппертурная диафрагма;
6. Конденбсор;
7. Препарат;
7". Увеличенное действительное промежуточное изображение препарата, образуемое; объективом;
7"". Увеличенное мнимое окончательное изображение препарата, наблюдаемое в окуляре;
8. Объектив;
9. выходной значок объектива;
10. Полевая диафрагма окуляра;
11. Окуляр;
12. Глаз.

Основную роль в получении изображения играет объектив . Он строит увеличенное, действительное и перевернутое изображение объекта. Затем это изображение дополнительно увеличивается при рассматривании его через окуляр, который аналогично обычной лупе дает увеличенное мнимое изображение.
Увеличение микроскопа ориентировочно можно определить, умножая увеличение объектива на увеличение окуляра. Однако увеличение не определяет качества изображения. Качество изображения, его четкость, определяется разрешающей способностью микроскопа , т. е. возможностью различать раздельно две близко расположенные точки. Предел разрешения - минимальное расстояние, на котором эти точки еще видны раздельно,- зависит от длины волны света, которым освещается объект, и числовой апертуры объектива. Числовая апертура, в свою очередь, зависит от угловой апертуры объектива и показателя преломления среды, находящейся между фронтальной линзой объектива и препаратом. Угловая апертура-это максимальный угол, под которым могут попадать в объектив лучи, прошедшие через объект. Чем больше апертура и чем ближе показатель преломления среды, находящейся между объективом и препаратом, к показателю преломления стекла, тем выше разрешающая способность объектива. Если считать апертуру конденсора равной апертуре объектива, то формула разрешающей способности имеет следующий вид:

где R - предел разрешения; - длина волны; NA - числовая апертура.

Различают полезное и бесполезное увеличение. Полезное увеличение обычно равно числовой апертуре объектива, увеличенной в 500-1000 раз. Более высокое окулярное увеличение не выявляет новых деталей и является бесполезным.
В зависимости от среды, которая находится между объективом и препаратом, различают «сухие» объективы малого и среднего увеличения (до 40 х) и иммерсионные с максимальной апертурой и увеличением (90-100 х). «Сухой» объектив - это такой объектив, между фронтальной линзой которого и препаратом, находится воздух.

Особенностью иммерсионных объективов является то, что между фронтальной линзой такого объектива и препаратом помещают иммерсионную жидкость, имеющую показатель преломления такой же, как стекло (или близкий к нему), что обеспечивает увеличение числовой апертуры и разрешающей способности объектива. В качестве иммерсионной жидкости для объективов водной иммерсии используют дистиллированную воду, а для объективов масляной иммерсии-кедровое масло или специальное синтетическое иммерсионное масло. Использование синтетического иммерсионного масла предпочтительнее, поскольку его параметры более точно нормируются, и оно в отличие от кедрового, не засыхает на поверхности фронтальной линзы объектива. Для объективов, работающих в ультрафиолетовой области спектра, в качестве иммерсионной жидкости используют глицерин. Ни в коем случае нельзя пользоваться суррогатами иммерсионного масла и, в частности, вазелиновым маслом.
**Изображение, полученное с помощью линз, обладает различными недостатками: сферической и хроматической аберрациями, кривизной поля изображения и др. В объективах, состоящих из нескольких линз, эти недостатки в той или иной мере исправлены. В зависимости от степени исправления этих недостатков различают объективы ахроматы и более сложные апохроматы. Соответственно объективы, в которых исправлена кривизна поля изображения, называются планахроматами и планапохроматами. Использование этих объективов позволяет получить резкое изображение по всему полю, тогда как изображение, полученное с помощью обычных объективов, не имеет одинаковой резкости в центре и на краях поля зрения. Все характеристики объектива обычно выгравированы на его оправе: собственное увеличение, апертура, тип объектива (АПО - апохромат и т. п.); объективы водной иммерсии имеют обозначение ВИ и белое кольцо вокруг оправы в нижней ее части, объективы масляной иммерсии-обозначение МИ и черное кольцо.
Все объективы рассчитаны для работы с покровным стеклом толщиной 0,17мм.
Толщина покровного стекла особенно влияет на качество изображения при работе с сильными сухими системами (40 х). При работе с иммерсионными объективами нельзя пользоваться покровными стеклами толще 0,17 мм потому, что толщина покровного стекла может оказаться больше, чем рабочее расстояние объектива, и в этом случае, при попытке сфокусировать объектив на препарат, может быть повреждена фронтальная линза объектива.
Окуляры состоят из двух линз и тоже бывают нескольких типов, каждый из которых применяется с определенным типом объектива, дополнительно устраняя недостатки изображения. Тип окуляра и его увеличение обозначены на его оправе.
Конденсор предназначен для того, чтобы сфокусировать на препарате свет от осветителя, направляемый зеркалом микроскопа или осветителя (в случае использования накладного или встроенного осветителя). Одной из деталей конденсора является апертурная диафрагма, которая имеет важное значения для правильного освещения препарата.
Осветитель состоит из низковольтной лампы накаливания с толстой нитью, трансформатора, коллекторной линзы и полевой диафрагмы, от раскрытия, которой зависит диаметр освещенного поля на препарате. Зеркало направляет свет от осветителя в конденсор. Для того чтобы сохранить параллельность лучей, идущих от осветителя в конденсор, необходимо использовать только плоскую сторону зеркала.

Настройка освещения н фокусировка микроскопа

Качество изображения в значительной мере зависит также от правильного освещения. Существует несколько различных способов освещения препарата при микроскопии. Наиболее распространенным является способ установки света по Келеру , который заключается в следующем:
1) устанавливают осветитель против зеркала микроскопа;
2) включают лампу осветителя и направляют свет на плоское (!) зеркало микроскопа;
3)помещают препарат на предметный столик микроскопа;
4) закрывают зеркало микроскопа листком белой бумаги и фокусируют на нем изображение нити лампы, передвигая патрон лампы в осветителе;
5) убирают лист бумаги с зеркала;
6) закрывают апертурную диафрагму конденсора. Перемещая зеркало и слегка передвигая патрон лампы, фокусируют изображение нити на апертурной диафрагме. Расстояние осветителя от микроскопа должно быть таким, чтобы изображение нити лампы было равно диаметру апертурной диафрагмы конденсора (наблюдать апертурную диафрагму можно с помощью плоского зеркала, помещенного с правой стороны основания микроскопа).
7)открывают апертурную диафрагму конденсора, уменьшают отверстие полевой диафрагмы осветителя и значительно уменьшают накал лампы;
8) при малом увеличении (10х), глядя в окуляр, получают резкое изображение препарата;
9)слегка поворачивая зеркало, переводят изображение полевой диафрагмы, которое имеет вид светлого пятна, в центр поля зрения. Опуская и поднимая конденсор, добиваются получения резкого изображения краев полевой диафрагмы в плоскости препарата (вокруг них может быть видна цветная каемка);
10) раскрывают полевую диафрагму осветителя до краев поля зрения, увеличивают накал нити лампы и слегка (на 1/3) уменьшают раскрытие апертурной диафрагмы конденсора;
11)при смене объектива необходимо проверить настройку света.
После окончания настройки света по Келеру нельзя изменять положение конденсораf раскрытие полевой и апертурной диафрагмы. Освещенность препарата можно регулировать только нейтральными светофильтрами или изменением накала лампы с помощью реостата. Излишнее открытие апертурной диафрагмы конденсора может привести к значительному снижению контраста изображения, а недостаточное - к значительному ухудшению качества изображения (появлению диффракционных колец). Для проверки правильности раскрытия апертурной диафрагмы необходимо удалить окуляр и, глядя в тубус, открыть ее таким образом, чтобы она закрывала светящееся поле на одну треть. Для правильного освещения препарата при работе с объективами малого увеличения (до 10х) необходимо отвинтить и снять верхнюю линзу конденсора.
Внимание! При работе с объективами, дающими большое увеличение - с сильными сухими (40х) и иммерсионными (90х) системами, чтобы не повредить фронтальную линзу, при фокусировке пользуются следующим приемом: наблюдая сбоку, опускают объектив макровинтом почти до соприкосновения с препаратом, затем, глядя в окуляр, макровинтом очень медленно поднимают объектив до появления изображения и с помощью микровинта производят окончательную фокусировку микроскопа.

Уход за микроскопом

При работе с микроскопом нельзя применять большие усилия. Нельзя касаться пальцами поверхности линз, зеркал и светофильтров.
Чтобы предохранить внутренние поверхности объективов, а также призмы тубуса от попадания пыли, необходимо всегда оставлять окуляр в тубусе. При чистке внешних поверхностей линз нужно удалить с них пыль мягкой кисточкой, промытой в эфире. Если необходимо, осторожно протирают поверхности линз хорошо выстиранной, не содержащей остатков мыла, полотняной или батистовой тряпочкой, слегка смоченной чистым бензином, эфиром или специальной смесью для чистки оптики. Не рекомендуется протирать оптику объективов ксилолом, так как это может привести к их расклеиванию.
С зеркал, имеющих наружное серебрение, можно только удалять пыль, сдувая ее резиновой грушей. Протирать их нельзя. Нельзя также самостоятельно развинчивать и разбирать объективы - это приведет к их порче. По окончании работы на микроскопе необходимо тщательно удалить остатки иммерсионного масла с фронтальной линзы объектива указанным выше способом. Затем опустить предметный столик (или конденсор в микроскопах с неподвижным столиком) и накрыть микроскоп чехлом.
Для сохранения внешнего вида микроскопа необходимо периодически протирать его мягкой тряпкой, слегка пропитанной бескислотным вазелином и затем сухой мягкой чистой тряпкой.

Помимо обычной световой микроскопии существуют методы микроскопии, позволяющие изучать неокрашенные микроорганизмы: фазово-контрастная , темнопольная и люминесцентная микроскопия. Для изучения микроорганизмов и их структур, размер которых меньше разрешающей способности светового микроскопа используют

Увеличение системы – важный фактор, в основе которого лежит выбор того или другого микроскопа в зависимости от решения необходимых задач. Все мы привыкли к тому, что проводить контроль полупроводниковых элементов необходимо на инспекционном микроскопе с увеличением 1000 и более крат, изучать насекомых можно, работая с 50 кратным стереомикроскопом, а луковые чешуйки, окрашенные йодом или зеленкой, мы изучали в школе на монокулярном микроскопе, когда понятие увеличения еще не было нам знакомо.

Но как интерпретировать понятие увеличения, когда перед нами находится цифровой или конфокальный микроскоп, а на объективах стоят значения 2000х, 5000х? Что это означает, будет ли 1000 кратное увеличение на оптическом микроскопе давать изображение, аналогичное цифровому 1000 кратному микроскопу? Об этом вы узнаете в этой статье.

Оптическое увеличение системы

Когда мы работаем с лабораторным или стереоскопическим микроскопом, подсчет текущего увеличения системы не составляет труда. Необходимо перемножить увеличение всех оптических компонентов системы. Обычно, в случае стереомикроскопа это объектив, трансфокатор или увеличительный барабан и окуляры.
В случае обычного лабораторного микроскопа дело обстоит еще проще – общее увеличение системы = кратность окуляров умноженная на кратность объектива, установленного в рабочую позицию. Важно помнить, что иногда встречаются специфические модели тубусов микроскопа, имеющие увеличивающий или уменьшающий фактор (особенно распространено для старых моделей микроскопов Leitz). Также, дополнительные оптические компоненты, будь то источник коаксиального освещения в стереомикроскопе или промежуточный адаптер для камеры, располагающийся под тубусом, могут иметь дополнительный фактор увеличения.


Дополнительные оптические компоненты иногда имеют свой фактор увеличения, отличный от 1. В данном случае, коаксиальный осветитель (поз. 2) стереомикроскопа Olympus SZX16 имеет дополнительный увеличивающий фактор 1,5х.

К примеру, стереомикроскоп с окулярами 10х, объективом 2х, трансфокатором в позиции 8х и блоком коаксиального освещения с фактором 1,5х будет обладать общим оптическим увеличением 10х2х8х1,5 = 240 крат.


Принципиальная схема получения изображения на световом микроскопе. Окуляр увеличивает изображение, построенное объективом и формирует мнимое изображение.

Под оптическим увеличением (Г) в таком случае следует понимать отношение тангенса угла наклона луча, вышедшего из оптической системы в пространство изображений, к тангенсу угла сопряженного ему луча в пространстве предметов. Либо отношение длины, сформированного оптической системой изображения отрезка, перпендикулярного оси оптической системы, к длине самого отрезка

Геометрическое увеличение системы

В случае, когда у системы нет окуляров, а увеличенное изображение формируется камерой на экране монитора, к примеру, как на микроскопе , следует переходить к термину геометрического увеличения оптической системы.
Геометрическое увеличение микроскопа – отношение линейного размера изображения объекта на мониторе к реальному размеру изучаемого объекта.
Получить значение геометрического увеличения можно перемножив следующие величины: оптическое увеличение объектива, оптическое увеличение адаптера камеры, отношение диагонали монитора к диагонали матрицы камеры.
К примеру, при работе на лабораторном микроскопе с объективом 50х, адаптером камеры 0,5х, камерой 1/2.5” и, выводя изображение на монитор ноутбука 14”, мы получим геометрическое увеличение системы = 50х0,5х(14/0,4) = 875х.
Хотя оптическое увеличение при этом будет равно 500х в случае 10х окуляров.

Цифровые микроскопы, конфокальные профилометры, электронные микроскопы и другие системы, формирующие цифровое изображение объекта на экране монитора оперируют понятием геометрического увеличения. Не стоит путать это понятие с оптическим увеличением.

Разрешение микроскопа

Широко распространено заблуждение, что разрешение микроскопа и его увеличение связаны между собой жесткой связью – чем больше увеличение, тем более мелкие объекты мы сможем в него увидеть. Это не верно. Самым важным фактором всегда остается разрешение оптической системы. Ведь увеличение неразрешенного изображения не даст нам о нем новой информации.

Разрешение микроскопа зависит от числового значения апертуры объектива, а также от длины волны источника освещения. Как вы видите, параметра увеличения системы в этой формуле нет.

где λ – усредненная длина волны источника света, NA – числовая апертура объектива, R – разрешение оптической системы.

При использовании объектива с NA 0,95 на лабораторном микроскопе с галогенным источником (средняя длина волны порядка 500 нм) мы получаем разрешение около 300 нм.

Как видно из принципиальной схемы светового микроскопа, окуляры увеличивают действительное изображение объекта. Если, к примеру, повысить кратность увеличения окуляров в 2 раза (вставить в микроскоп окуляры 20х) – то общее увеличение системы удвоится, но разрешение при этом останется прежним.

Важное замечание

Предположим, что у нас есть два варианта построения простого лабораторного микроскопа. Первый построим, используя объектив 40х NA 0,65 и окуляры 10х. Второй же будет использовать объектив 20х NA 0,4 окуляры 20x.

Увеличение микроскопов в обоих вариантах будет одинаковое = 400х (простое перемножение увеличения объектива и окуляров). А вот разрешение в первом варианте будет выше, чем во втором, так как числовая апертура объектива 40х больше. К тому же не стоит забывать о поле зрения окуляров, у 20х этот параметр на 20-25% ниже.

Цель работы . Ознакомление с устройством микроскопа и определение его разрешающей способности.

Приборы и принадлежности : Микроскоп, металлическая пластинка с маленьким отверстием, осветительное зеркало, линейка со шкалой.

Введение

Микроскоп состоит из объектива и окуляра, которые представляют собой сложные системы линз. Ход лучей в микроскопе изображён на рис.1, на котором объектив и окуляр представлены одиночными линзами.

Рассматриваемый предмет АВ размещают немного дальше от главного фокуса объектива F об . Объектив микроскопа даёт действительное, обратное и увеличенное изображение предмета (AB на рис. 1), которое образуется за двойным фокусным расстоянием объектива. Увеличенное изображение рассматривается окуляром как лупой. Изображение предмета, рассматриваемое в окуляр, мнимое, обратное и увеличенное.

Расстояние между задним фокусом объектива и передним фокусом окуляра называется оптическим интервалом системы илиоптической длиной тубуса микроскопа.

Увеличение микроскопа можно определить по увеличению объектива и окуляра :

N = N об  N ок = ───── (1)

f об  f ок

где N об и N ок - увеличение объектива и окуляра соответственно; D - расстояние наилучшего зрения для нормального глаза (~25 см.) ;  - оптическая длина тубуса микроскопа; f об и f ок - главные фокусные расстояния объектива и окуляра.

При анализе формулы (1) можно сделать заключение, что в микроскопах с большим увеличением можно рассматривать любые мелкие предметы. Однако полезное увеличение, даваемое микроскопом, ограничивается дифракционными явлениями, которые становятся заметными при рассматривании предметов, размеры которых сравнимы с длинной световой волны.

Пределом разрешающей способности микроскопа называется наименьшее расстояние между точками, изображение которых в микроскопе получается раздельно.

Согласно теории Аббе предел разрешающей способности микроскопа определяет выражение:

d = ───── (2)

где d - линейный размер рассматриваемого предмета; - длина волны используемого света; n - показатель преломления среды между предметом и объективом;  - угол между главной оптической осью микроскопа и граничным лучом (рис. 2).

Величина A = nsin называется числовой апертурой объектива , а величина, обратная d, - разрешающей способностью микроскопа . Из выражения (2) следует что разрешающая способность микроскопа зависит от числовой апертуры объектива и длины волны света, которым освещается рассматриваемый предмет.

Если предмет находится в воздухе (n=1), то в микроскопе можно различить точки предмета, расстояние между которыми:

d = ─────

Для микроскопических предметов угол  близок к 90 градусам, тогда sin  1, откуда следует, что в микроскопе можно рассматривать предметы, находящиеся на расстоянии друг от друга ~ 0,61. В случае визуальных наблюдений (максимум чувствительности глаза приходится на зеленую область видимого спектра   550 нм) в микроскопе можно разглядеть предметы, находящиеся на расстоянии ~300 нм.

Как следует из выражения (2), разрешающую способность микроскопа можно увеличить путём уменьшения длины волны света, которым освещается предмет. Так, при фотографировании объектов в ультрафиолетовом свете (~ 250-300 нм) разрешающую способность микроскопа удаётся увеличить вдвое.